Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 111(40): 11658-61, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17877383

RESUMO

The electronic structure of pol(ethylene oxide) (PEO) in a thin (<1 mu) film sample was experimentally probed by X-ray emission spectroscopy. Both nonresonant and resonant X-ray emission spectra were simulated by using density functional theory (DFT) applied to four different models representing different conformations in the polymer. Calculated spectra were compared with experimental results for the PEO film. It was found that the best fit was obtained with the polymer conformation in PEO electrolytes from which the salt (LiMF6, M = P, As, or Sb) had been removed. This conformation is different from the crystalline bulk polymer and implies that film casting, commonly used to form electrolytes for Li polymer batteries, induces the same conformation in the polymer not depending upon the presence of salt.

2.
J Phys Chem B ; 110(15): 7708-19, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610865

RESUMO

A homologous series of lithium alkyl mono- and dicarbonate salts was synthesized as model reference compounds for the frequently proposed components constituting the electrolyte/electrode interface in Li-ion batteries. The physicochemical characterization of these reference compounds in the bulk state using thermal analyses and X-ray photoelectron, nuclear magnetic resonance, and Fourier transform infrared spectroscopies establishes a reliable database of comparison for the studies on the surface chemistry of electrodes harvested from Li-ion cells.

3.
J Phys Chem B ; 109(37): 17567-73, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16853247

RESUMO

Lithium ethylene dicarbonate ((CH2OCO2Li)2) was chemically synthesized and its Fourier transform infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2 M lithium hexafluorophosphate (LiPF6)/ethylene carbonate (EC):ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in the passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established on the basis of analysis of the IR spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA