Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474063

RESUMO

Hypertrophic cardiomyopathy (HCM) is a disease in which the myocardium of the heart becomes asymmetrically thickened, malformed, disordered, and loses its normal structure and function. Recent studies have demonstrated the significant involvement of inflammatory responses in HCM. However, the precise role of immune-related long non-coding RNAs (lncRNAs) in the pathogenesis of HCM remains unclear. In this study, we performed a comprehensive analysis of immune-related lncRNAs in HCM. First, transcriptomic RNA-Seq data from both HCM patients and healthy individuals (GSE180313) were reanalyzed thoroughly. Key HCM-related modules were identified using weighted gene co-expression network analysis (WGCNA). A screening for immune-related lncRNAs was conducted within the key modules using immune-related mRNA co-expression analysis. Based on lncRNA-mRNA pairs that exhibit shared regulatory microRNAs (miRNAs), we constructed a competing endogenous RNA (ceRNA) network, comprising 9 lncRNAs and 17 mRNAs that were significantly correlated. Among the 26 lncRNA-mRNA pairs, only the MIR210HG-BPIFC pair was verified by another HCM dataset (GSE130036) and the isoprenaline (ISO)-induced HCM cell model. Furthermore, knockdown of MIR210HG increased the regulatory miRNAs and decreased the mRNA expression of BPIFC correspondingly in AC16 cells. Additionally, the analysis of immune cell infiltration indicated that the MIR210HG-BPIFC pair was potentially involved in the infiltration of naïve CD4+ T cells and CD8+ T cells. Together, our findings indicate that the decreased expression of the lncRNA-mRNA pair MIR210HG-BPIFC was significantly correlated with the pathogenesis of the disease and may be involved in the immune cell infiltration in the mechanism of HCM.


Assuntos
Cardiomiopatia Hipertrófica , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Mensageiro/genética , RNA Longo não Codificante/genética , Linfócitos T CD8-Positivos/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , Perfilação da Expressão Gênica , Proteínas de Transporte/genética
2.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891834

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.


Assuntos
Rim Policístico Autossômico Dominante , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/terapia , Rim Policístico Autossômico Dominante/patologia , Humanos , Animais , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças
3.
J Zhejiang Univ Sci B ; 25(2): 135-152, 2024 Feb 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38303497

RESUMO

Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia among humans, with its incidence increasing significantly with age. Despite the high frequency of AF in clinical practice, its etiology and management remain elusive. To develop effective treatment strategies, it is imperative to comprehend the underlying mechanisms of AF; therefore, the establishment of animal models of AF is vital to explore its pathogenesis. While spontaneous AF is rare in most animal species, several large animal models, particularly those of pigs, dogs, and horses, have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options. This review aims to provide a comprehensive discussion of various animal models of AF, with an emphasis on the unique features of each model and its utility in AF research and treatment. The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.


Assuntos
Fibrilação Atrial , Humanos , Animais , Cães , Cavalos , Suínos , Fibrilação Atrial/tratamento farmacológico , Modelos Animais de Doenças , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA