Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 107(4): 1125-1138, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35594452

RESUMO

In mammals, testis development is triggered by the expression of the sex-determining Y-chromosome gene SRY to commit the Sertoli cell (SC) fate at gonadal sex determination in the fetus. Several genes have been identified to be required to promote the testis pathway following SRY activation (i.e., SRY box 9 (SOX9)) in an embryo; however, it largely remains unknown about the genes and the mechanisms involved in stabilizing the testis pathway after birth and throughout adulthood. Herein, we report postnatal males with SC-specific deletion of Raptor demonstrated the absence of SC unique identity and adversely acquired granulosa cell-like characteristics, along with loss of tubular architecture and scattered distribution of SCs and germ cells. Subsequent genome-wide analysis by RNA sequencing revealed a profound decrease in the transcripts of testis genes (i.e., Sox9, Sox8, and anti-Mullerian hormone (Amh)) and, conversely, an increase in ovary genes (i.e., LIM/Homeobox gene 9 (Lhx9), Forkhead box L2 (Foxl2) and Follistatin (Fst)); these changes were further confirmed by immunofluorescence and quantitative reverse-transcription polymerase chain reaction. Importantly, co-immunofluorescence demonstrated that Raptor deficiency induced SCs dedifferentiation into a progenitor state; the Raptor-mutant gonads showed some ovarian somatic cell features, accompanied by enhanced female steroidogenesis and elevated estrogen levels, yet the zona pellucida 3 (ZP3)-positive terminally feminized oocytes were not observed. In vitro experiments with primary SCs suggested that Raptor is likely involved in the fibroblast growth factor 9 (FGF9)-induced formation of cell junctions among SCs. Our results established that Raptor is required to maintain SC identity, stabilize the male pathway, and promote testis development.


Assuntos
Aves Predatórias , Células de Sertoli , Animais , Hormônio Antimülleriano/genética , Estrogênios/metabolismo , Feminino , Fator 9 de Crescimento de Fibroblastos/genética , Folistatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Masculino , Mamíferos/genética , Camundongos , Aves Predatórias/genética , Aves Predatórias/metabolismo , Fatores de Transcrição SOX9/genética , Células de Sertoli/metabolismo , Processos de Determinação Sexual/genética , Testículo/metabolismo , Fatores de Transcrição/genética
2.
J Reprod Dev ; 67(5): 313-318, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34433733

RESUMO

Oligoasthenoteratozoospermia is a human infertility syndrome caused by defects in spermatogenesis, spermiogenesis, and sperm maturation, and its etiology remains unclear. Kelch-like 10 (KLHL10) is a component of ubiquitin ligase E3 10 (KLHL10) and plays an important role in male fertility. Deletion or mutation of the Klhl10 gene in Drosophila or mice results in defects in spermatogenesis or sperm maturation. However, the molecular mechanisms by which KLHL10 functions remain elusive. In this study, we identified a missense mutation (c.1528A→G, p.I510V) in exon 5 of KLHL10, which is associated with oligoasthenoteratozoospermia in humans. To investigate the effects of this mutation on KLHL10 function and spermatogenesis and/or spermiogenesis, we generated mutant mice duplicating the amino acid conversion using the clustered regularly interspaced palindromic repeat/caspase 9 (CRISPR/Cas9) system and designated them Klhl10I510V mice. However, the Klhl10I510V mice did not exhibit any defects in testis development, spermatogenesis, or sperm motility at ten-weeks-of-age, suggesting that this mutation does not disrupt the KLHL10 function, and may not be the cause of male infertility in the affected individual with oligoasthenoteratozoospermia.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Oligospermia/genética , Adulto , Animais , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto
3.
Biol Reprod ; 103(5): 1121-1131, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32744313

RESUMO

Mammalian spermatozoa are highly polarized cells characterized by compartmentalized cellular structures and energy metabolism. Adenylate kinase (AK), which interconverts two ADP molecules into stoichiometric amounts of ATP and AMP, plays a critical role in buffering adenine nucleotides throughout the tail to support flagellar motility. Yet the role of the major AK isoform, AK1, is still not well characterized. Here, by using a proteomic analysis of testis biopsy samples, we found that AK1 levels were significantly decreased in nonobstructive azoospermia patients. This result was further verified by immunohistochemical staining of AK1 on a tissue microarray. AK1 was found to be expressed in post-meiotic round and elongated spermatids in mouse testis and subsequent mature sperm in the epididymis. We then generated Ak1 knockout mice, which showed that AK1 deficiency did not induce any defects in testis development, spermatogenesis, or sperm morphology and motility under physiological conditions. We further investigated detergent-modeled epididymal sperm and included individual or mixed adenine nucleotides to mimic energy stress. When only ADP was available, Ak1 disruption largely compromised sperm motility, manifested as a smaller beating amplitude and higher beating frequency, which resulted in less effective forward swimming. The energy restriction/recover experiments with intact sperm further addressed this finding. Besides, decreased AK activity was observed in sperm of a male fertility disorder mouse model induced by cadmium chloride. These results cumulatively demonstrate that AK1 was dispensable for testis development, spermatogenesis, or sperm motility under physiological conditions, but was required for sperm to maintain a constant adenylate energy charge to support sperm motility under conditions of energy stress.


Assuntos
Adenilato Quinase/genética , Metabolismo Energético/fisiologia , Infertilidade Masculina/genética , Motilidade dos Espermatozoides/genética , Adenilato Quinase/metabolismo , Animais , Epididimo/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteômica , Espermátides/metabolismo , Espermatozoides/metabolismo
4.
Front Endocrinol (Lausanne) ; 15: 1360499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455652

RESUMO

Introduction: Males with acute spinal cord injury (SCI) frequently exhibit testosterone deficiency and reproductive dysfunction. While such incidence rates are high in chronic patients, the underlying mechanisms remain elusive. Methods and results: Herein, we generated a rat SCI model, which recapitulated complications in human males, including low testosterone levels and spermatogenic disorders. Proteomics analyses showed that the differentially expressed proteins were mostly enriched in lipid metabolism and steroid metabolism and biosynthesis. In SCI rats, we observed that testicular nitric oxide (NO) levels were elevated and lipid droplet-autophagosome co-localization in testicular interstitial cells was decreased. We hypothesized that NO impaired lipophagy in Leydig cells (LCs) to disrupt testosterone biosynthesis and spermatogenesis. As postulated, exogenous NO donor (S-nitroso-N-acetylpenicillamine (SNAP)) treatment markedly raised NO levels and disturbed lipophagy via the AMPK/mTOR/ULK1 pathway, and ultimately impaired testosterone production in mouse LCs. However, such alterations were not fully observed when cells were treated with an endogenous NO donor (L-arginine), suggesting that mouse LCs were devoid of an endogenous NO-production system. Alternatively, activated (M1) macrophages were predominant NO sources, as inducible NO synthase inhibition attenuated lipophagic defects and testosterone insufficiency in LCs in a macrophage-LC co-culture system. In scavenging NO (2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO)) we effectively restored lipophagy and testosterone levels both in vitro and in vivo, and importantly, spermatogenesis in vivo. Autophagy activation by LYN-1604 also promoted lipid degradation and testosterone synthesis. Discussion: In summary, we showed that NO-disrupted-lipophagy caused testosterone deficiency following SCI, and NO clearance or autophagy activation could be effective in preventing reproductive dysfunction in males with SCI.


Assuntos
Óxido Nítrico , Traumatismos da Medula Espinal , Camundongos , Masculino , Ratos , Humanos , Animais , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Testosterona/metabolismo , Macrófagos/metabolismo , Traumatismos da Medula Espinal/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA