Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(9): 1205-1214, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770389

RESUMO

Antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein (RBD S-protein) contribute significantly to the humoral immune response during coronavirus infection (COVID-19) and after vaccination. The main focus of the studies of the RBD epitope composition is usually concentrated on the epitopes recognized by the virus-neutralizing antibodies. The role of antibodies that bind to RBD but do not neutralize SARS-CoV-2 remains unclear. In this study, immunochemical properties of the two mouse monoclonal antibodies (mAbs), RS17 and S11, against the RBD were examined. Both mAbs exhibited high affinity to RBD, but they did not neutralize the virus. The epitopes of these mAbs were mapped using phage display: the epitope recognized by the mAb RS17 is located at the N-terminal site of RBD (348-SVYAVNRKRIS-358); the mAb S11 epitope is inside the receptor-binding motif of RBD (452-YRLFRKSN-459). Three groups of sera were tested for presence of antibodies competing with the non-neutralizing mAbs S11 and RS17: (i) sera from the vaccinated healthy volunteers without history of COVID-19; (ii) sera from the persons who had a mild form of COVID-19; (iii) sera from the persons who had severe COVID-19. Antibodies competing with the mAb S11 were found in each group of sera with equal frequency, whereas presence of the antibodies competing with the mAb RS17 in the sera was significantly more frequent in the group of sera obtained from the patients recovered from severe COVID-19 indicating that such antibodies are associated with the severity of COVID-19. In conclusion, despite the clear significance of anti-RBD antibodies in the effective immune response against SARS-CoV-2, it is important to analyze their virus-neutralizing activity and to confirm absence of the antibody-mediated enhancement of infection by the anti-RBD antibodies.


Assuntos
COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Epitopos de Linfócito B , Anticorpos Antivirais
2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445984

RESUMO

Antibody-dependent enhancement (ADE) has been shown previously for SARS-CoV-1, MERS-CoV, and SARS-CoV-2 infection in vitro. In this study, the first monoclonal antibody (mAb) that causes ADE in a SARS-CoV-2 in vivo model was identified. mAb RS2 against the SARS-CoV-2 S-protein was developed using hybridoma technology. mAb RS2 demonstrated sub-nanomolar affinity and ability to neutralize SARS-CoV-2 infection in vitro with IC50 360 ng/mL. In an animal model of SARS-CoV-2 infection, the dose-dependent protective efficacy of mAb RS2 was revealed. However, in post-exposure prophylaxis, the administration of mAb RS2 led to an increase in the viral load in the respiratory tract of animals. Three groups of blood plasma were examined for antibodies competing with mAb RS2: (1) plasmas from vaccinated donors without COVID-19; (2) plasmas from volunteers with mild symptoms of COVID-19; (3) plasmas from patients with severe COVID-19. It was demonstrated that antibodies competing with mAb RS2 were significantly more often recorded in sera from volunteers with severe COVID-19. The results demonstrated for the first time that in animals, SARS-CoV-2 can induce antibody/antibodies that can elicit ADE. Moreover, in the sera of patients with severe COVID-19, there are antibodies competing for the binding of an epitope that is recognized by the ADE-eliciting mAb.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , SARS-CoV-2/metabolismo , Anticorpos Antivirais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA