Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(2): 1232-1246, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38176061

RESUMO

Electrostatic interaction of ampholytic nanocolloidal particles (NPs), which mimic globular proteins, with polyelectrolyte brushes is analyzed within mean-field Poisson-Boltzmann approximation. In accordance with experimental findings, the theory predicts that an electrostatic driving force for the particle uptake by the brush may emerge when the net charge of the particle in the buffer and the charge of the brush are of the same sign. The origin of this driving force is change in the ionization state of weak cationic and anionic groups on the NP surface provoked by interaction with the brush. In experimental systems, the ionic interactions are complemented by excluded-volume, hydrophobic, and other types of interactions that all together control NP uptake by or expulsion from the brush. Here, we focus on the NP-brush ionic interactions. It is demonstrated that deviation between the buffer pH and the NP isoelectric point, considered usually as the key control parameter, does not uniquely determine the insertion free energy patterns. The latter depends also on the proportion of cationic and anionic groups in the NPs and their specific ionization constants as well as on salt concentration in the buffer. The analysis of the free energy landscape proves that a local minimum in the free energy inside the brush appears, provided the NP charge reversal occurs upon insertion into the brush. This minimum corresponds either to a thermodynamically stable or to a metastable state, depending on the pH offset from the IEP and salt concentration, and is separated from the bulk of the solution by a free energy barrier. The latter, being fairly independent of salt concentration in height, may strongly impede the NP absorption kinetically even when it is thermodynamically favorable. Hence, change reversal is a necessary but insufficient condition for the uptake of the NPs by similarly charged polyelectrolyte brushes.

2.
Biomacromolecules ; 24(6): 2433-2446, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171171

RESUMO

The self-consistent field Poisson-Boltzmann framework is applied to analyze equilibrium partitioning of ampholytic nanoparticles (NPs) between buffer solution and polyelectrolyte (PE) polyanionic brush. We demonstrate that depending on pH and salt concentration in the buffer solution, interactions between ionizable (acidic and basic) groups on the NP surface and electrostatic field created by PE brush may either lead to the spontaneous uptake of NPs or create an electrostatic potential barrier, preventing the penetration of NPs inside PE brush. The capability of PE brush to absorb or repel NPs is determined by the shape of the insertion free energy that is calculated as a function of NP distance from the grafting surface. It is demonstrated that, at a pH value below or slightly above the isoelectric point (IEP), the electrostatic free energy of the particle is negative inside the brush and absorption is thermodynamically favorable. In the latter case, the insertion free energy exhibits a local maximum (potential barrier) at the entrance to the brush. An increase in pH leads to the shallowing of the free energy minimum inside the brush and a concomitant increase in the free energy maximum, which may result in kinetic hindering of NP uptake. Upon further increase in pH the insertion free energy becomes positive, making NP absorption thermodynamically unfavorable. An increase in salt concentration diminishes the depth of the free energy minimum inside the brush and eventually leads to its disappearance. Hence, in accordance with existing experimental data our theory predicts that an increase in salt concentration suppresses absorption of NPs (protein globules) by PE brush in the vicinity of IEP. The interplay between electrostatic driving force for NP absorption and osmotic repelling force (proportional to NP volume) indicates that for large NPs with relatively small number of ionizable groups osmotic repulsion overcomes electrostatic attraction preventing thereby absorption of NPs by PE brush.


Assuntos
Misturas Anfolíticas , Nanopartículas , Polieletrólitos , Proteínas
3.
Soft Matter ; 19(43): 8440-8452, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37881868

RESUMO

We revisit the classic scaling model of a cylindrical polyelectrolyte (PE) brush focusing on molecular brushes with stiff backbones and dispersions of polymer-decorated nanorods. Based on the blob representation we demonstrate that similarly to the case of planar PE brushes, separation of intra- and intermolecular repulsions between charges leads to novel scaling regimes for cylindrical PE brushes in salt-added solution and a sharper decrease in its thickness versus salt concentration dependence. These theoretical predictions may inspire further comprehensive experimental research and computer simulations of synthetic and biopolyelectrolyte cylindrical brushes.

4.
Macromol Rapid Commun ; 44(16): e2200980, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36915225

RESUMO

Polymer brushes are attractive as surface coatings for a wide range of applications, from fundamental research to everyday life, and also play important roles in biological systems. How colloids (e.g., functional nanoparticles, proteins, viruses) bind and move across polymer brushes is an important yet under-studied problem. A mean-field theoretical approach is presented to analyze the binding and transport of colloids in planar polymer brushes. The theory explicitly considers the effect of solvent strength on brush conformation and of colloid-polymer affinity on colloid binding and transport. The position-dependent free energy of the colloid insertion into the polymer brush which controls the rate of colloid transport across the brush is derived. It is shown how the properties of the brush can be adjusted for brushes to be highly selective, effectively serving as tuneable gates with respect to colloid size and affinity to the brush-forming polymer. The most important parameter regime simultaneously allowing for high brush permeability and selectivity corresponds to a condition when the repulsive and attractive contributions to the colloid insertion free energy nearly cancel. This theory should be useful to design sensing and purification devices with enhanced selectivity and to better understand mechanisms underpinning the functions of biological polymer brushes.


Assuntos
Polímeros , Proteínas , Polímeros/química , Solventes/química , Conformação Molecular , Coloides/química
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834807

RESUMO

We apply a coarse-grained self-consistent field Poisson-Boltzmann framework to study interaction between Bovine Serum Albumin (BSA) and a planar polyelectropyte brush. Both cases of negatively (polyanionic) and positively (polycationic) charged brushes are considered. Our theoretical model accounts for (1) re-ionization free energy of the amino acid residues upon protein insertion into the brush; (2) osmotic force repelling the protein globule from the brush; (3) hydrophobic interactions between non-polar areas on the globule surface and the brush-forming chains. We demonstrate that calculated position-dependent insertion free energy exhibits different patterns, corresponding to either thermodynamically favourable BSA absorption in the brush or thermodynamically or kinetically hindered absorption (expulsion) depending on the pH and ionic strength of the solution. The theory predicts that due to the re-ionization of BSA within the brush, a polyanionic brush can efficiently absorb BSA over a wider pH range on the "wrong side" of the isoelectric point (IEP) compared to a polycationic brush. The results of our theoretical analysis correlate with available experimental data and thus validate the developed model for prediction of the interaction patterns for various globular proteins with polyelectrolyte brushes.


Assuntos
Eletrólitos , Soroalbumina Bovina , Soroalbumina Bovina/química , Polieletrólitos , Eletrólitos/química , Modelos Químicos
6.
Soft Matter ; 18(6): 1239-1246, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35043819

RESUMO

Swelling behaviour and bulk moduli of polymer gels comprising of crosslinked bottlebrush subchains enable fine tuning by varying polymerization degrees of the main and side chains of the bottlebrush strands as well as their grafting densities. By using scaling approach we predict power law dependences of structural and elastic properties of swollen bottlebrush gels on the set of relevant architectural parameters and construct phase diagrams consisting of regions corresponding to different power law asymptotics for these dependences. In particular, our theory predict that bulk elastic modulus of the gel exhibits non-monotonous dependence on the degree of polymerization of side chains of the bottlebrush strands.

7.
Soft Matter ; 18(46): 8714-8732, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36373559

RESUMO

We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.

8.
Phys Chem Chem Phys ; 24(14): 8463-8476, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343984

RESUMO

The interaction of colloidal particles with a planar polymer brush immersed in a solvent of variable thermodynamic quality is studied by a numerical self-consistent field method combined with analytical mean-field theory. The effect of embedded particle on the distribution of polymer density in the brush is analyzed and the particle insertion free energy profiles are calculated for variable size and shape of the particles and sets of polymer-particle and polymer-solvent interaction parameters. In particular, both cases of repulsive and attractive interactions between particles and brush-forming chains are considered. It is demonstrated that for large particles the insertion free energy is dominated by repulsive (osmotic) contribution and is approximately proportional to the particle volume in accordance with earlier theoretical predictions [Halperin et al., Macromolecules, 2011, 44, 3622]. For the particles of smaller size or/and large shape asymmetry the adsorption or depletion of a polymer from the particle surface essentially contributes to the insertion free energy balance. As a result, depending on the set of polymer-solvent and polymer-particle interaction parameters and brush grafting density the insertion free energy profile may exhibit complex patterns, i.e., from a pure repulsive effective potential barrier to an attractive well. The results of our study allow for predicting equilibrium partitioning and controlling diffusive transport of (bio)nanocolloids across (bio)polymer brushes of arbitrary geometry including polymer-modified membranes or nanopores.

9.
Nature ; 538(7623): 79-83, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27556943

RESUMO

Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as 'colloidal surfactants' and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a 'raspberry' surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

10.
Langmuir ; 37(9): 2865-2873, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33625232

RESUMO

Weak polyampholytes and globular proteins among them can be efficiently absorbed from solutions by polyelectrolyte brushes or microgels even if the net charge of the polyampholyte is of the same sign as that of the brush/microgel. We use a mean-field approach for calculating the free energy of insertion of a probe polyampholyte molecule into a polyelectrolyte brush/microgel. We anticipate that the insertion of the polyampholyte into similarly charged brush/microgel may be thermodynamically favorable due to the gain in the cumulative re-ionization free energy of the pH-sensitive acidic and basic residues. Importantly, we demonstrate that the polyampholyte (protein) charge sign inversion upon transfer from the bulk of the solution to the brush/microgel does not provide sufficient conditions to assure negative re-ionization free energy balance. Thus (in the absence of other driving or stopping mechanisms), charge sign inversion does not necessarily provoke spontaneous absorption of the polyampholyte into the brush/microgel.


Assuntos
Microgéis , Eletrólitos , Polieletrólitos , Proteínas
11.
Phys Chem Chem Phys ; 22(40): 23385-23398, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33048067

RESUMO

Theory describing equilibrium structural properties of solvent-free brushes formed by comblike polymers tethered by end segment of backbone to planar surface is developed using strong-stretching self-consistent field (SS-SCF) analytical approach and supported by numerical self-consistent field calculations based on the Scheutjens-Fleer (SF-SCF) method. The explicit dependence of self-consistent molecular potential on architectural parameters of comblike polymers is analyzed. It is demonstrated that distribution of local tension in backbones of long comblike polymers approaches that for linear chains. The star-to-comblike transition in solvent-free lamellas which occurs upon increase of backbone length of graft-polymer is analyzed.

12.
Langmuir ; 35(48): 15872-15879, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31402668

RESUMO

The spatial distribution of polymer ligands on the surface of nanoparticles (NPs) is of great importance because it determines their interactions with each other and with the surrounding environment. Phase separation in mixtures of polymer brushes has been studied for spherical NPs; however, the role of local surface curvature of nonspherical NPs in the surface phase separation of end-grafted polymer ligands remains an open question. Here, we examined phase separation in mixed monolayers of incompatible polystyrene and poly(ethylene glycol) brushes end-capping the surface of gold nanorods in a good solvent. By varying the molar ratio between these polymers, we generated a range of surface patterns, including uniform and nonuniform polystyrene shells, randomly distributed polystyrene surface patches, and, most interestingly, a helicoidal pattern of polystyrene patches wrapping around the nanorods. The helicoidally patterned nanorods exhibited long-term colloidal stability in a good solvent. The helicoidal wrapping of the nanorods was achieved for the mixtures of polymers with different molecular weights and preserved when the quality of the solvent for the polymers was reduced. The helicoidal organization of polymer patches on the surface of nanorods can be used for templating the synthesis or self-assembly of helicoidal multicomponent nanomaterials.

13.
Langmuir ; 35(7): 2680-2691, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30720279

RESUMO

Using a combination of a mean-field theoretical method and the numerical Scheutjens-Fleer self-consistent field approach, we predict that it is possible to have re-entrant morphological transitions in nanostructures of diblock copolymers upon variation in temperature-mediated solubility of the associating blocks. This peculiar effect is explained by the different rates in variation of the density of the collapsed core domains and the corresponding interfacial energy as a function of the temperature. The theoretical findings are supported by existing experimental observations of reversed sequences of the morphological transitions occurring upon temperature variation in solutions of amphiphilic block copolymers.

14.
J Chem Phys ; 151(21): 214902, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822102

RESUMO

Brushes formed by arm-tethered starlike polyelectrolytes may exhibit internal segregation into weakly and strongly extended populations (stratified two-layer structure) when strong ionic intermolecular repulsions induce stretching of the tethers up to the limit of their extensibility. We propose an approximate Poisson-Boltzmann theory for analysis of the structure of the stratified brush and compare it with results of numerical self-consistent field modeling. Both analytical and numerical models point to the formation of a narrow cloud of counterions (internal double electrical layer) localized inside a stratified brush at the boundary between the layers.

15.
Angew Chem Int Ed Engl ; 58(27): 9269-9274, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050140

RESUMO

Using two orthogonal external stimuli, programmable staged surface patterning and self-assembly of inorganic nanoparticles (NPs) was achieved. For gold NPs capped with end-grafted poly(styrene-block-(4-vinylbenzoic acid)), P(St-block-4VBA), block copolymer ligands, surface-pinned micelles (patches) formed from NP-adjacent PSt blocks under reduced solvency conditions (Stimulus 1); solvated NP-remote P(4VBA) blocks stabilized the NPs against aggregation. Subsequent self-assembly of patchy NPs was triggered by crosslinking the P(4VBA) blocks with copper(II) ions (Stimulus 2). Block copolymer ligand design has a strong effect on NP self-assembly. Small, well-defined clusters assembled from NPs functionalized with ligands with a short P(4VBA) block, while NPs tethered with ligands with a long P(4VBA) block formed large irregularly shaped assemblies. This approach is promising for high-yield fabrication of colloidal molecules and their assemblies with structural and functional complexity.

16.
Angew Chem Int Ed Engl ; 58(10): 3123-3127, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30604462

RESUMO

Chiral packing of ligands on the surface of nanoparticles (NPs) is of fundamental and practical importance, as it determines how NPs interact with each other and with the molecular world. Herein, for gold nanorods (NRs) capped with end-grafted nonchiral polymer ligands, we show a new mechanism of chiral surface patterning. Under poor solvency conditions, a smooth polymer layer segregates into helicoidally organized surface-pinned micelles (patches). The helicoidal morphology is dictated by the polymer grafting density and the ratio of the polymer ligand length to nanorod radius. Outside this specific parameter space, a range of polymer surface structures was observed, including random, shish-kebab, and hybrid patches, as well as a smooth polymer layer. We characterize polymer surface morphology by theoretical and experimental state diagrams. The helicoidally organized polymer patches on the NR surface can be used as a template for the helicoidal organization of other NPs, masked synthesis on the NR surface, as well as the exploration of new NP self-assembly modes.

17.
Soft Matter ; 14(30): 6230-6242, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027975

RESUMO

Two complementary self-consistent field theoretical approaches are used to analyze the equilibrium structure of binary and ternary brushes of polyions with different degrees of polymerization. Stratification in binary brushes is predicted: the shorter chains are entirely embedded in the proximal sublayer depleted of end-points of longer chains while the peripheral sublayer contains exclusively terminal segments of longer chains. The boundary between sublayers is enriched with counterions that neutralize the residual charge of the proximal sublayer. These analytical predictions for binary brushes are confirmed and extended to ternary brushes using the numerical Scheutjens-Fleer approach.

18.
J Chem Phys ; 149(18): 184904, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441928

RESUMO

We present a mean-field theory for the solution properties of polyelectrolyte molecular brushes, comprising multiple ionically charged side chains tethered to the main chain (backbone). The power-law dependences for local and large-scale conformational properties, i.e., the brush thickness, extension of spacers between the grafts, and end-to-end distance for the main chain macromolecule, are derived as a function of architectural parameters (the lengths of the main chain and of the grafts, grafting density). We demonstrate that at high grafting density or/and a large fraction of charged monomer units in the grafts, the localization of counterions in the intra-molecular volume occurs and we specify the onset of this transition. We prove that such localization of the counterions is accompanied by full extension of the main chain of the polyelectrolyte molecular brush in salt-free solution. This stretching of the main chain is relaxed upon an increase in the salt concentration. The dependence of the macromolecular dimensions of the polyelectrolyte molecular brush on the salt concentration is derived, and multiple power-law exponents valid in different salt concentration ranges are predicted.

19.
Langmuir ; 33(5): 1315-1325, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28134533

RESUMO

We present a theory of conformational transition triggered by inferior solvent strength in brushes formed by dendritically branched macromolecules tethered to planar, concave, or convex cylindrical and spherical surfaces. In the regime of linear elasticity for brush-forming dendrons, an analytical strong stretching self-consistent field (SS-SCF) approach provides brush conformational properties as a function of solvent strength. A boxlike model is applied to describe the collapse transition in brushes formed by macromolecules with arbitrary treelike topology, including hyperbranched polymers. We demonstrate that an increase in the degree of branching, that is, an increase in the number of generations or/and functionality of branching points in tethered macromolecules, makes the swelling-to-collapse transition less sharp. A decrease in surface curvature has a similar effect. The numerical Scheutjens-Fleer self-consistent field approach is used to analyze the collapse transition in dendron brushes in the nonlinear stretching regime. It is demonstrated that inferior solvent strength suppresses stratification that is exhibited under good solvent conditions by densely grafted dendron brushes.

20.
J Chem Phys ; 146(21): 214901, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28595404

RESUMO

Polyelectrolyte brushes are formed by charged macromolecules tethered by the end segment to a solid-liquid interface. At low ionic strength of the solution, the intermolecular electrostatic interactions lead to strong stretching of the macromolecules that may, as a result, approach the limit of their extensibility (the contour length). Here, we present an analytical theory of polyelectrolyte brushes developed within the Poisson-Boltzmann approximation which explicitly accounts for finite extensibility of the brush-forming chains. In contrast to earlier theories based on the approximation of Gaussian elasticity of the brush-forming chains, the current approach enables avoiding artificial result of stretching of the chains beyond the contour length at high degrees of ionization or/and large grafting densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA