Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Factors ; : 187208241272066, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117017

RESUMO

OBJECTIVE: Physical and cognitive workloads and performance were studied for a corrective shared control (CSC) human-robot collaborative (HRC) sanding task. BACKGROUND: Manual sanding is physically demanding. Collaborative robots (cobots) can potentially reduce physical stress, but fully autonomous implementation has been particularly challenging due to skill, task variability, and robot limitations. CSC is an HRC method where the robot operates semi-autonomously while the human provides real-time corrections. METHODS: Twenty laboratory participants removed paint using an orbital sander, both manually and with a CSC robot. A fully automated robot was also tested. RESULTS: The CSC robot improved subjective discomfort compared to manual sanding in the upper arm by 29.5%, lower arm by 32%, hand by 36.5%, front of the shoulder by 24%, and back of the shoulder by 17.5%. Muscle fatigue measured using EMG, was observed in the medial deltoid and flexor carpi radialis for the manual condition. The composite cognitive workload on the NASA-TLX increased by 14.3% for manual sanding due to high physical demand and effort, while mental demand was 14% greater for the CSC robot. Digital imaging showed that the CSC robot outperformed the automated condition by 7.16% for uniformity, 4.96% for quantity, and 6.06% in total. CONCLUSIONS: In this example, we found that human skills and techniques were integral to sanding and can be successfully incorporated into HRC systems. Humans performed the task using the CSC robot with less fatigue and discomfort. APPLICATIONS: The results can influence implementation of future HRC systems in manufacturing environments.

2.
Hum Factors ; : 187208221093829, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35548929

RESUMO

OBJECTIVE: The effect of camera viewpoint was studied when performing visually obstructed psychomotor targeting tasks. BACKGROUND: Previous research in laparoscopy and robotic teleoperation found that complex perceptual-motor adaptations associated with misaligned viewpoints corresponded to degraded performance in manipulation. Because optimal camera positioning is often unavailable in restricted environments, alternative viewpoints that might mitigate performance effects are not obvious. METHODS: A virtual keyboard-controlled targeting task was remotely distributed to workers of Amazon Mechanical Turk. The experiment was performed by 192 subjects for a static viewpoint with independent parameters of target direction, Fitts' law index of difficulty, viewpoint azimuthal angle (AA), and viewpoint polar angle (PA). A dynamic viewpoint experiment was also performed by 112 subjects in which the viewpoint AA changed after every trial. RESULTS: AA and target direction had significant effects on performance for the static viewpoint experiment. Movement time and travel distance increased while AA increased until there was a discrete improvement in performance for 180°. Increasing AA from 225° to 315° linearly decreased movement time and distance. There were significant main effects of current AA and magnitude of transition for the dynamic viewpoint experiment. Orthogonal direction and no-change viewpoint transitions least affected performance. CONCLUSIONS: Viewpoint selection should aim to minimize associated rotations within the manipulation plane when performing targeting tasks whether implementing a static or dynamic viewing solution. Because PA rotations had negligible performance effects, PA adjustments may extend the space of viable viewpoints. APPLICATIONS: These results can inform viewpoint selection for visual feedback during psychomotor tasks.

3.
J Surg Res ; 247: 150-155, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31776024

RESUMO

BACKGROUND: Time away from surgical practice can lead to skills decay. Research residents are thought to be prone to skills decay, given their limited experience and reduced exposure to clinical activities during their research training years. This study takes a cross-sectional approach to assess differences in residents' skills at the beginning and end of their research years using virtual reality. We hypothesized that research residents will have measurable decay in psychomotor skills when evaluated using virtual reality. METHODS: Surgical residents (n = 28) were divided into two groups; the first group was just beginning their research time (clinical residents: n = 19) and the second group (research residents: n = 9) had just finished at least 2 y of research. All participants were asked to perform a target-tracking task using a haptic device, and their performance was compared using Welch's t-test. RESULTS: Research residents showed a higher level of "tracking error" (1.69 ± 0.44 cm versus 1.40 ± 0.19 cm; P = 0.04) and a similar level of "path length" (62.5 ± 10.5 cm versus 62.1 ± 5.2 cm; P = 0.92) when compared with clinical residents. CONCLUSIONS: The increased "tracking error" among residents at the end of their research time suggests fine psychomotor skills decay in residents who spend time away from clinical duties during laboratory time. This decay demonstrates the need for research residents to regularly participate in clinical activities, simulation, or assessments to minimize and monitor skills decay while away from clinical practice. Additional longitudinal studies may help better map learning and decay curves for residents who spend time away from clinical practice.


Assuntos
Pesquisa Biomédica/estatística & dados numéricos , Competência Clínica/estatística & dados numéricos , Internato e Residência/estatística & dados numéricos , Desempenho Psicomotor , Treinamento por Simulação/estatística & dados numéricos , Estudos Transversais , Feminino , Humanos , Masculino , Treinamento por Simulação/métodos , Fatores de Tempo , Realidade Virtual
4.
J Am Vet Med Assoc ; 259(S2): 1-4, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349476

RESUMO

In collaboration with the American College of Veterinary Pathologists.


Assuntos
Patologia Veterinária , Médicos Veterinários , Animais , Humanos , Estados Unidos
5.
Appl Ergon ; 97: 103531, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34273816

RESUMO

Worker posture, task time and performance are often affected when one-handed manual dexterous tasks are performed in small overhead spaces under an obscured view. A common method used for supplementing visual feedback in these cases is a hand-held telescopic mirror, but that involves working with both arms extended overhead, and is often accompanied by awkward neck and shoulder postures. A video camera was considered as an alternative to using a mirror for visual feedback and reducing overhead reach. A mirror, a borescope and an omnidirectional camera were evaluated while laboratory participants performed three one-handed simulated manufacturing tasks in a small overhead enclosure. Videos were recorded for quantifying the time that postures were assumed while performing the tasks. The average time that both arms were above mid-shoulder height for the omnidirectional camera was more than 2.5 times less than for the mirror and borescope. The average proportion of neck strain time was 0.01% (or less) for both the omnidirectional camera and the borescope, compared to 83.68% for the mirror. No significant differences were observed in task completion times between the three modalities. Hence, an omnidirectional camera can provide visibility while reducing straining postures for manufacturing operations involving overhead work.


Assuntos
Postura , Ombro , Braço , Retroalimentação , Humanos , Pescoço
6.
IEEE Robot Autom Lett ; 6(2): 3720-3727, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33869746

RESUMO

Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abilities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this paper, we present corrective shared autonomy, where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.

7.
Front Robot AI ; 8: 707149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646866

RESUMO

Remote teleoperation of robots can broaden the reach of domain specialists across a wide range of industries such as home maintenance, health care, light manufacturing, and construction. However, current direct control methods are impractical, and existing tools for programming robot remotely have focused on users with significant robotic experience. Extending robot remote programming to end users, i.e., users who are experts in a domain but novices in robotics, requires tools that balance the rich features necessary for complex teleoperation tasks with ease of use. The primary challenge to usability is that novice users are unable to specify complete and robust task plans to allow a robot to perform duties autonomously, particularly in highly variable environments. Our solution is to allow operators to specify shorter sequences of high-level commands, which we call task-level authoring, to create periods of variable robot autonomy. This approach allows inexperienced users to create robot behaviors in uncertain environments by interleaving exploration, specification of behaviors, and execution as separate steps. End users are able to break down the specification of tasks and adapt to the current needs of the interaction and environments, combining the reactivity of direct control to asynchronous operation. In this paper, we describe a prototype system contextualized in light manufacturing and its empirical validation in a user study where 18 participants with some programming experience were able to perform a variety of complex telemanipulation tasks with little training. Our results show that our approach allowed users to create flexible periods of autonomy and solve rich manipulation tasks. Furthermore, participants significantly preferred our system over comparative more direct interfaces, demonstrating the potential of our approach for enabling end users to effectively perform remote robot programming.

8.
J Vet Diagn Invest ; 33(1): 167-169, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33164720

RESUMO

Canine distemper virus (CDV) has long been recognized as a cause of myocarditis; however, cases of myocarditis caused by naturally acquired CDV infection have been reported only rarely in dogs. We describe here our retrospective study of naturally acquired systemic CDV infection in 4 dogs, 4-7 wk old, that had myocarditis, with myocardial necrosis and fibrosis. One of the 4 dogs had intracytoplasmic eosinophilic inclusion bodies in cardiomyocytes. Other lesions included bronchointerstitial pneumonia (4 of 4), necrotizing hepatitis (2 of 4), splenic lymphoid necrosis (2 of 4), encephalitis (1 of 3; brain was not submitted in 1 case), and necrotizing gastroenteritis (1 of 4). The presence of CDV in the heart was confirmed by immunohistochemistry in all 4 dogs.


Assuntos
Vírus da Cinomose Canina/fisiologia , Cinomose/complicações , Doenças do Cão/patologia , Miocardite/veterinária , Animais , Cinomose/virologia , Doenças do Cão/virologia , Cães , Coração/virologia , Miocardite/patologia , Miocardite/virologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA