Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679762

RESUMO

Data redundancy and data loss are relevant issues in condition monitoring. Sampling strategies for segment intervals can address these at the source, but do not receive the attention they deserve. Currently, the sampling methods in relevant research lack sufficient adaptability to the condition. In this paper, an adaptive sampling framework of segment intervals is proposed, based on the summary and improvement of existing problems. The framework is implemented to monitor mechanical degradation, and experiments are implemented on simulation data and real datasets. Subsequently, the distributions of the samples collected by different sampling strategies are visually presented through a color map, and five metrics are designed to assess the sampling results. The intuitive and numerical results show the superiority of the proposed method in comparison to existing methods, and the results are closely related to data status and degradation indicators. The smaller the data fluctuation and the more stable the degradation trend, the better the result. Furthermore, the results of the objective physical indicators are obviously better than those of the feature indicators. By addressing existing problems, the proposed framework opens up a new idea of predictive sampling, which significantly improves the degradation monitoring.


Assuntos
Simulação por Computador
2.
Eur J Oper Res ; 304(1): 308-324, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848917

RESUMO

The global health crisis caused by the coronavirus SARS-CoV-2 has highlighted the importance of efficient disease detection and control strategies for minimizing the number of infections and deaths in the population and halting the spread of the pandemic. Countries have shown different preparedness levels for promptly implementing disease detection strategies, via mass testing and isolation of identified cases, which led to a largely varying impact of the outbreak on the populations and health-care systems. In this paper, we propose a new pandemic resource allocation model for allocating limited disease detection and control resources, in particular testing capacities, in order to limit the spread of a pandemic. The proposed model is a novel epidemiological compartmental model formulated as a non-linear programming model that is suitable to address the inherent non-linearity of an infectious disease progression within the population. A number of novel features are implemented in the model to take into account important disease characteristics, such as asymptomatic infection and the distinct risk levels of infection within different segments of the population. Moreover, a method is proposed to estimate the vulnerability level of the different communities impacted by the pandemic and to explicitly consider equity in the resource allocation problem. The model is validated against real data for a case study of COVID-19 outbreak in France and our results provide various insights on the optimal testing intervention time and level, and the impact of the optimal allocation of testing resources on the spread of the disease among regions. The results confirm the significance of the proposed modeling framework for informing policymakers on the best preparedness strategies against future infectious disease outbreaks.

3.
Entropy (Basel) ; 25(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190434

RESUMO

In this paper, an adaptive remaining useful life prediction model is proposed for electric vehicle lithium batteries. Capacity degradation of the electric car lithium batteries is modeled by the multi-fractal Weibull motion. The varying degree of long-range dependence and the 1/f characteristics in the frequency domain are also analyzed. The age and state-dependent degradation model is derived, with the associated adaptive drift and diffusion coefficients. The adaptive mechanism considers the quantitative relations between the drift and diffusion coefficients. The unit-to-unit variability is considered a random variable. To facilitate the application, the convergence of the RUL prediction model is proved. Replacement of the lithium battery in the electric car is recommended according to the remaining useful life prediction results. The effectiveness of the proposed model is shown in the case study.

4.
Risk Anal ; 39(9): 1949-1969, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30779857

RESUMO

This article proposes a novel mathematical optimization framework for the identification of the vulnerabilities of electric power infrastructure systems (which is a paramount example of critical infrastructure) due to natural hazards. In this framework, the potential impacts of a specific natural hazard on an infrastructure are first evaluated in terms of failure and recovery probabilities of system components. Then, these are fed into a bi-level attacker-defender interdiction model to determine the critical components whose failures lead to the largest system functionality loss. The proposed framework bridges the gap between the difficulties of accurately predicting the hazard information in classical probability-based analyses and the over conservatism of the pure attacker-defender interdiction models. Mathematically, the proposed model configures a bi-level max-min mixed integer linear programming (MILP) that is challenging to solve. For its solution, the problem is casted into an equivalent one-level MILP that can be solved by efficient global solvers. The approach is applied to a case study concerning the vulnerability identification of the georeferenced RTS24 test system under simulated wind storms. The numerical results demonstrate the effectiveness of the proposed framework for identifying critical locations under multiple hazard events and, thus, for providing a useful tool to help decisionmakers in making more-informed prehazard preparation decisions.

5.
Risk Anal ; 39(12): 2766-2785, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31361041

RESUMO

Defenders have to enforce defense strategies by taking decisions on allocation of resources to protect the integrity and survivability of cyber-physical systems (CPSs) from intentional and malicious cyber attacks. In this work, we propose an adversarial risk analysis approach to provide a novel one-sided prescriptive support strategy for the defender to optimize the defensive resource allocation, based on a subjective expected utility model, in which the decisions of the adversaries are uncertain. This increases confidence in cyber security through robustness of CPS protection actions against uncertain malicious threats compared with prescriptions provided by a classical defend-attack game-theoretical approach. We present the approach and the results of its application to a nuclear CPS, specifically the digital instrumentation and control system of the advanced lead-cooled fast reactor European demonstrator.

6.
Risk Anal ; 38(4): 755-776, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28873245

RESUMO

A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties.

7.
Sensors (Basel) ; 18(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543733

RESUMO

Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.

8.
Risk Anal ; 37(1): 147-159, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26970378

RESUMO

The end states reached by an engineered system during an accident scenario depend not only on the sequences of the events composing the scenario, but also on their timing and magnitudes. Including these additional features within an overarching framework can render the analysis infeasible in practical cases, due to the high dimension of the system state-space and the computational effort correspondingly needed to explore the possible system evolutions in search of the interesting (and very rare) ones of failure. To tackle this hurdle, in this article we introduce a framework for efficiently probing the space of event sequences of a dynamic system by means of a guided Monte Carlo simulation. Such framework is semi-automatic and allows embedding the analyst's prior knowledge about the system and his/her objectives of analysis. Specifically, the framework allows adaptively and intelligently allocating the simulation efforts preferably on those sequences leading to outcomes of interest for the objectives of the analysis, e.g., typically those that are more safety-critical (and/or rare). The emerging diversification in the filling of the state-space by the preference-guided exploration allows also the retrieval of critical system features, which can be useful to analysts and designers for taking appropriate means of prevention and mitigation of dangerous and/or unexpected consequences. A dynamic system for gas transmission is considered as a case study to demonstrate the application of the method.

9.
Risk Anal ; 37(7): 1315-1340, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28095591

RESUMO

Models for the assessment of the risk of complex engineering systems are affected by uncertainties due to the randomness of several phenomena involved and the incomplete knowledge about some of the characteristics of the system. The objective of this article is to provide operative guidelines to handle some conceptual and technical issues related to the treatment of uncertainty in risk assessment for engineering practice. In particular, the following issues are addressed: (1) quantitative modeling and representation of uncertainty coherently with the information available on the system of interest; (2) propagation of the uncertainty from the input(s) to the output(s) of the system model; (3) (Bayesian) updating as new information on the system becomes available; and (4) modeling and representation of dependences among the input variables and parameters of the system model. Different approaches and methods are recommended for efficiently tackling each of issues (1)-(4) above; the tools considered are derived from both classical probability theory as well as alternative, nonfully probabilistic uncertainty representation frameworks (e.g., possibility theory). The recommendations drawn are supported by the results obtained in illustrative applications of literature.

10.
Risk Anal ; 35(4): 594-607, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933109

RESUMO

Large-scale outages on real-world critical infrastructures, although infrequent, are increasingly disastrous to our society. In this article, we are primarily concerned with power transmission networks and we consider the problem of allocation of generation to distributors by rewiring links under the objectives of maximizing network resilience to cascading failure and minimizing investment costs. The combinatorial multiobjective optimization is carried out by a nondominated sorting binary differential evolution (NSBDE) algorithm. For each generators-distributors connection pattern considered in the NSBDE search, a computationally cheap, topological model of failure cascading in a complex network (named the Motter-Lai [ML] model) is used to simulate and quantify network resilience to cascading failures initiated by targeted attacks. The results on the 400 kV French power transmission network case study show that the proposed method allows us to identify optimal patterns of generators-distributors connection that improve cascading resilience at an acceptable cost. To verify the realistic character of the results obtained by the NSBDE with the embedded ML topological model, a more realistic but also more computationally expensive model of cascading failures is adopted, based on optimal power flow (namely, the ORNL-Pserc-Alaska) model). The consistent results between the two models provide impetus for the use of topological, complex network theory models for analysis and optimization of large infrastructures against cascading failure with the advantages of simplicity, scalability, and low computational cost.

11.
Risk Anal ; 35(1): 142-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25041408

RESUMO

Dynamic reliability methods aim at complementing the capability of traditional static approaches (e.g., event trees [ETs] and fault trees [FTs]) by accounting for the system dynamic behavior and its interactions with the system state transition process. For this, the system dynamics is here described by a time-dependent model that includes the dependencies with the stochastic transition events. In this article, we present a novel computational framework for dynamic reliability analysis whose objectives are i) accounting for discrete stochastic transition events and ii) identifying the prime implicants (PIs) of the dynamic system. The framework entails adopting a multiple-valued logic (MVL) to consider stochastic transitions at discretized times. Then, PIs are originally identified by a differential evolution (DE) algorithm that looks for the optimal MVL solution of a covering problem formulated for MVL accident scenarios. For testing the feasibility of the framework, a dynamic noncoherent system composed of five components that can fail at discretized times has been analyzed, showing the applicability of the framework to practical cases.

12.
Risk Anal ; 35(9): 1674-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25487957

RESUMO

In this article, a classification model based on the majority rule sorting (MR-Sort) method is employed to evaluate the vulnerability of safety-critical systems with respect to malevolent intentional acts. The model is built on the basis of a (limited-size) set of data representing (a priori known) vulnerability classification examples. The empirical construction of the classification model introduces a source of uncertainty into the vulnerability analysis process: a quantitative assessment of the performance of the classification model (in terms of accuracy and confidence in the assignments) is thus in order. Three different app oaches are here considered to this aim: (i) a model-retrieval-based approach, (ii) the bootstrap method, and (iii) the leave-one-out cross-validation technique. The analyses are presented with reference to an exemplificative case study involving the vulnerability assessment of nuclear power plants.

13.
Risk Anal ; 34(7): 1164-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24152111

RESUMO

This is a perspective article on foundational issues in risk assessment and management. The aim is to discuss the needs, obstacles, and challenges for the establishment of a renewed, strong scientific foundation for risk assessment and risk management suited for the current and future technological challenges. The focus is on (i) reviewing and discussing the present situation and (ii) identifying how to best proceed in the future, to develop the risk discipline in the directions needed. The article provides some reflections on the interpretation and understanding of the concept of "foundations of risk assessment and risk management" and the challenges therein. One main recommendation is that different arenas and moments for discussion are needed to specifically address foundational issues in a way that embraces the many disciplinary communities involved (from social scientists to engineers, from behavioral scientists to statisticians, from health physicists to lawyers, etc.). One such opportunity is sought in the constitution of a novel specialty group of the Society of Risk Analysis.

14.
Risk Anal ; 34(7): 1196-207, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24984873

RESUMO

In the analysis of the risk associated to rare events that may lead to catastrophic consequences with large uncertainty, it is questionable that the knowledge and information available for the analysis can be reflected properly by probabilities. Approaches other than purely probabilistic have been suggested, for example, using interval probabilities, possibilistic measures, or qualitative methods. In this article, we look into the problem and identify a number of issues that are foundational for its treatment. The foundational issues addressed reflect on the position that "probability is perfect" and take into open consideration the need for an extended framework for risk assessment that reflects the separation that practically exists between analyst and decisionmaker.

15.
Risk Anal ; 33(6): 1146-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23078089

RESUMO

In general, two types of dependence need to be considered when estimating the probability of the top event (TE) of a fault tree (FT): "objective" dependence between the (random) occurrences of different basic events (BEs) in the FT and "state-of-knowledge" (epistemic) dependence between estimates of the epistemically uncertain probabilities of some BEs of the FT model. In this article, we study the effects on the TE probability of objective and epistemic dependences. The well-known Frèchet bounds and the distribution envelope determination (DEnv) method are used to model all kinds of (possibly unknown) objective and epistemic dependences, respectively. For exemplification, the analyses are carried out on a FT with six BEs. Results show that both types of dependence significantly affect the TE probability; however, the effects of epistemic dependence are likely to be overwhelmed by those of objective dependence (if present).

16.
Risk Anal ; 33(1): 121-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22831561

RESUMO

Expert knowledge is an important source of input to risk analysis. In practice, experts might be reluctant to characterize their knowledge and the related (epistemic) uncertainty using precise probabilities. The theory of possibility allows for imprecision in probability assignments. The associated possibilistic representation of epistemic uncertainty can be combined with, and transformed into, a probabilistic representation; in this article, we show this with reference to a simple fault tree analysis. We apply an integrated (hybrid) probabilistic-possibilistic computational framework for the joint propagation of the epistemic uncertainty on the values of the (limiting relative frequency) probabilities of the basic events of the fault tree, and we use possibility-probability (probability-possibility) transformations for propagating the epistemic uncertainty within purely probabilistic and possibilistic settings. The results of the different approaches (hybrid, probabilistic, and possibilistic) are compared with respect to the representation of uncertainty about the top event (limiting relative frequency) probability. Both the rationale underpinning the approaches and the computational efforts they require are critically examined. We conclude that the approaches relevant in a given setting depend on the purpose of the risk analysis, and that further research is required to make the possibilistic approaches operational in a risk analysis context.


Assuntos
Árvores de Decisões , Probabilidade , Medição de Risco/métodos , Incerteza , Humanos , Método de Monte Carlo
17.
ISA Trans ; 125: 360-370, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34266643

RESUMO

The Remaining Useful Life (RUL) is important for reliability analysis of li-ion battery. Reliability of li-ion battery decreases with shortened the RUL. The RUL of li-ion battery can be revealed by the capacity change. The future change of the capacity is related to the current and the historical states, namely, the capacity change of li-ion battery has Long-Range Dependence (LRD). This article describes a RUL prediction method based on fractional order Lévy stable motion (fLsm), which solves the LRD was not obvious caused by the excessive difference of the integer-order model. First, the LRD of the fLsm is revealed by stability index and integral kernel function with Hurst parameter. Then, the fLsm is used as a diffusion term, which reflects the stochastic and LRD of the RUL degradation, to establish a degradation prediction model. The iterative form of the prediction model is established through the incremental distribution of the fLsm. Finally, the RUL is predicted by the Monte Carlo simulation and degradation prediction model. The predictive performance of the fLsm degradation model is verified by battery data in different operating environments. The reliability of li-ion battery is analyzed by the RUL.

18.
ISA Trans ; 122: 486-500, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33993993

RESUMO

The reliability prediction of gearbox is a complex and challenging topic. The purpose of this research is to propose a hybrid difference iterative forecasting model to forecast reliability of the gearbox. On this score, a hybrid model based on the fractional Lévy stable motion (fLsm), the Grey Model (GM) and the metabolism method is proposed. To solve the problem of insensitivity to weak faults inside the gearbox, we use feature extraction method to reveal the gearbox degradation. Then, the least square theory is used to separate the degradation sequence in the gearbox into a deterministic term with monotonicity and a stochastic term with Long-Range Dependence (LRD). Next, the fLsm with LRD and non-Gaussian is used to forecast the stochastic term, the deterministic term is simulated by the GM, and the hybrid forecasting model is used to modify the prediction results. The metabolism method is used to update the degradation sequence and to forecast longer-term trend. Finally, a case demonstrated that superiority and generality of the hybrid forecasting model.


Assuntos
Modelos Teóricos , Previsões , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes
19.
Risk Anal ; 31(8): 1196-210, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21371060

RESUMO

In this work, specific indicators are used to characterize the criticality of components in a network system with respect to their contribution to failure cascade processes. A realistic-size network is considered as reference case study. Three different models of cascading failures are analyzed, differing both on the failure load distribution logic and on the cascade triggering event. The criticality indicators are compared to classical measures of topological centrality to identify the one most characteristic of the cascade processes considered.

20.
Reliab Eng Syst Saf ; 205: 107270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33088026

RESUMO

In the last 20-30 years, technological innovation has enabled the advancement of industry at a global scale, giving rise to a truly global society, resting on an interdependent web of transnational technical, economic and social systems. These systems are exposed to scenarios of cascading outbreaks, whose impacts can ripple to very large scales through their strong interdependencies, as recently shown by the pandemic spreading of the Coronavirus. Considerable work has been conducted in recent years to develop frameworks to support the assessment, communication, management and governance of this type of risk, building on concepts like systemic risks, complexity theory, deep uncertainties, resilience engineering, adaptive management and black swans. Yet contemporary risk analysis struggles to provide authoritative societal guidance for adequately handling these types of risks, as clearly illustrated by the Coronavirus case. In this paper, we reflect on this situation. We aim to identify critical challenges in current frameworks of risk assessment and management and point to ways to strengthen these, to be better able to confront threats like the Coronavirus in the future. A set of principles and theses are established, which have the potential to support a common foundation for the many different scientific perspectives and 'schools' currently dealing with risk handling issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA