Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 110(3): 1041-6, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23275297

RESUMO

The molecular etiology of human progenitor reprogramming into self-renewing leukemia stem cells (LSC) has remained elusive. Although DNA sequencing has uncovered spliceosome gene mutations that promote alternative splicing and portend leukemic transformation, isoform diversity also may be generated by RNA editing mediated by adenosine deaminase acting on RNA (ADAR) enzymes that regulate stem cell maintenance. In this study, whole-transcriptome sequencing of normal, chronic phase, and serially transplantable blast crisis chronic myeloid leukemia (CML) progenitors revealed increased IFN-γ pathway gene expression in concert with BCR-ABL amplification, enhanced expression of the IFN-responsive ADAR1 p150 isoform, and a propensity for increased adenosine-to-inosine RNA editing during CML progression. Lentiviral overexpression experiments demonstrate that ADAR1 p150 promotes expression of the myeloid transcription factor PU.1 and induces malignant reprogramming of myeloid progenitors. Moreover, enforced ADAR1 p150 expression was associated with production of a misspliced form of GSK3ß implicated in LSC self-renewal. Finally, functional serial transplantation and shRNA studies demonstrate that ADAR1 knockdown impaired in vivo self-renewal capacity of blast crisis CML progenitors. Together these data provide a compelling rationale for developing ADAR1-based LSC detection and eradication strategies.


Assuntos
Adenosina Desaminase/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Adenosina Desaminase/genética , Processamento Alternativo , Animais , Crise Blástica/etiologia , Crise Blástica/genética , Crise Blástica/metabolismo , Crise Blástica/patologia , Transformação Celular Neoplásica , Progressão da Doença , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Mediadores da Inflamação/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide de Fase Crônica/genética , Leucemia Mieloide de Fase Crônica/metabolismo , Leucemia Mieloide de Fase Crônica/patologia , Camundongos , Edição de RNA , Proteínas de Ligação a RNA , Transcriptoma , Transplante Heterólogo , Ensaio Tumoral de Célula-Tronco
3.
J Transl Med ; 13: 52, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25889244

RESUMO

BACKGROUND: Deregulation of RNA editing by adenosine deaminases acting on dsRNA (ADARs) has been implicated in the progression of diverse human cancers including hematopoietic malignancies such as chronic myeloid leukemia (CML). Inflammation-associated activation of ADAR1 occurs in leukemia stem cells specifically in the advanced, often drug-resistant stage of CML known as blast crisis. However, detection of cancer stem cell-associated RNA editing by RNA sequencing in these rare cell populations can be technically challenging, costly and requires PCR validation. The objectives of this study were to validate RNA editing of a subset of cancer stem cell-associated transcripts, and to develop a quantitative RNA editing fingerprint assay for rapid detection of aberrant RNA editing in human malignancies. METHODS: To facilitate quantification of cancer stem cell-associated RNA editing in exons and intronic or 3'UTR primate-specific Alu sequences using a sensitive, cost-effective method, we established an in vitro RNA editing model and developed a sensitive RNA editing fingerprint assay that employs a site-specific quantitative PCR (RESSq-PCR) strategy. This assay was validated in a stably-transduced human leukemia cell line, lentiviral-ADAR1 transduced primary hematopoietic stem and progenitor cells, and in primary human chronic myeloid leukemia stem cells. RESULTS: In lentiviral ADAR1-expressing cells, increased RNA editing of MDM2, APOBEC3D, GLI1 and AZIN1 transcripts was detected by RESSq-PCR with improved sensitivity over sequencing chromatogram analysis. This method accurately detected cancer stem cell-associated RNA editing in primary chronic myeloid leukemia samples, establishing a cancer stem cell-specific RNA editing fingerprint of leukemic transformation that will support clinical development of novel diagnostic tools to predict and prevent cancer progression. CONCLUSIONS: RNA editing quantification enables rapid detection of malignant progenitors signifying cancer progression and therapeutic resistance, and will aid future RNA editing inhibitor development efforts.


Assuntos
Reprogramação Celular , Células-Tronco Neoplásicas/patologia , Edição de RNA/genética , Adenosina Desaminase/metabolismo , Biomarcadores Tumorais/metabolismo , Crise Blástica/patologia , Técnicas de Cocultura , Progressão da Doença , Humanos , Células K562 , Lentivirus/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Modelos Biológicos , Reprodutibilidade dos Testes
4.
Exp Cell Res ; 319(13): 2091-2102, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707396

RESUMO

The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness.


Assuntos
Movimento Celular/genética , Núcleo Celular/enzimologia , Citoesqueleto/enzimologia , Citosol/enzimologia , Proteínas Tirosina Quinases/fisiologia , Animais , Células COS , Forma Celular/genética , Chlorocebus aethiops , Citoesqueleto/genética , Adesões Focais/genética , Adesões Focais/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/fisiologia , Transporte Proteico/genética , Proteínas Tirosina Quinases/genética , Transfecção , Células Tumorais Cultivadas
5.
BMC Cancer ; 11: 244, 2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668985

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. METHODS: We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). RESULTS: A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. CONCLUSIONS: ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches aimed to study genes or pathways involved in ccRCC etiopathogenesis and to identify novel clinical markers or therapeutic targets. Moreover, SNP array technology proved to be a powerful tool to better define the cell composition and homogeneity of RCC primary cultures.


Assuntos
Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral/citologia , Neoplasias Renais/patologia , Carcinoma de Células Renais/química , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral/química , Linhagem Celular Tumoral/ultraestrutura , Forma Celular , DNA de Neoplasias/análise , DNA de Neoplasias/genética , Dosagem de Genes , Perfilação da Expressão Gênica , Instabilidade Genômica , Genótipo , Humanos , Imunofenotipagem , Neoplasias Renais/química , Neoplasias Renais/genética , Perda de Heterozigosidade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
6.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600169

RESUMO

Targeted therapies and immunotherapy have shown promise in patients with non-small cell lung cancer (NSCLC). However, the majority of patients fail or become resistant to treatment, emphasizing the need for novel treatments. In this study, we confirm the prognostic value of levels of AXL, a member of the TAM receptor tyrosine kinase family, in NSCLC and demonstrate potent antitumor activity of the AXL-targeting antibody-drug conjugate enapotamab vedotin across different NSCLC subtypes in a mouse clinical trial of human NSCLC. Tumor regression or stasis was observed in 17/61 (28%) of the patient-derived xenograft (PDX) models and was associated with AXL mRNA expression levels. Significant single-agent activity of enapotamab vedotin was validated in vivo in 9 of 10 AXL-expressing NSCLC xenograft models. In a panel of EGFR-mutant NSCLC cell lines rendered resistant to EGFR inhibitors in vitro, we observed de novo or increased AXL protein expression concomitant with enapotamab vedotin-mediated cytotoxicity. Enapotamab vedotin also showed antitumor activity in vivo in 3 EGFR-mutant, EGFR inhibitor-resistant PDX models, including an osimertinib-resistant NSCLC PDX model. In summary, enapotamab vedotin has promising therapeutic potential in NSCLC. The safety and preliminary efficacy of enapotamab vedotin are currently being evaluated in the clinic across multiple solid tumor types, including NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
7.
Cell Stem Cell ; 19(5): 599-612, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27570067

RESUMO

Age-related human hematopoietic stem cell (HSC) exhaustion and myeloid-lineage skewing promote oncogenic transformation of hematopoietic progenitor cells into therapy-resistant leukemia stem cells (LSCs) in secondary acute myeloid leukemia (AML). While acquisition of clonal DNA mutations has been linked to increased rates of secondary AML for individuals older than 60 years, the contribution of RNA processing alterations to human hematopoietic stem and progenitor aging and LSC generation remains unclear. Comprehensive RNA sequencing and splice-isoform-specific PCR uncovered characteristic RNA splice isoform expression patterns that distinguished normal young and aged human stem and progenitor cells (HSPCs) from malignant myelodysplastic syndrome (MDS) and AML progenitors. In splicing reporter assays and pre-clinical patient-derived AML models, treatment with a pharmacologic splicing modulator, 17S-FD-895, reversed pro-survival splice isoform switching and significantly impaired LSC maintenance. Therapeutic splicing modulation, together with monitoring splice isoform biomarkers of healthy HSPC aging versus LSC generation, may be employed safely and effectively to prevent relapse, the leading cause of leukemia-related mortality.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Splicing de RNA/genética , Animais , Sobrevivência Celular/genética , Senescência Celular/genética , Técnicas de Cocultura , Células HEK293 , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Síndromes Mielodisplásicas/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Spliceossomos/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA