Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 56(21): 5890-5896, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29047906

RESUMO

We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.

2.
J Chem Phys ; 139(18): 184309, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24320276

RESUMO

Nonradiative energy dissipation in electronically excited polyatomic molecules proceeds through conical intersections, loci of degeneracy between electronic states. We observe a marked enhancement of laser-induced double ionization in the vicinity of a conical intersection during a non-radiative transition. We measured double ionization by detecting the kinetic energy of ions released by laser-induced strong-field fragmentation during the ring-opening transition between 1,3-cyclohexadiene and 1,3,5-hexatriene. The enhancement of the double ionization correlates with the conical intersection between the HOMO and LUMO orbitals.

3.
Sci Rep ; 12(1): 2810, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181689

RESUMO

We demonstrate an approach to obtaining near quantum-limited far-field imaging resolution of incoherent sources with arbitrary distributions. Our method assumes no prior knowledge of the source distribution, but rather uses an adaptive approach to imaging via spatial mode demultiplexing that iteratively updates both the form of the spatial imaging modes and the estimate of the source distribution. The optimal imaging modes are determined by minimizing the estimated Cramér-Rao bound over the manifold of all possible sets of orthogonal imaging modes. We have observed through Monte Carlo simulations that the manifold-optimized spatial mode demultiplexing measurement consistently outperforms standard imaging techniques in the accuracy of source reconstructions and comes within a factor of 2 of the absolute quantum limit as set by the quantum Cramér-Rao bound. The adaptive framework presented here allows for a consistent approach to achieving near quantum-limited imaging resolution of arbitrarily distributed sources through spatial mode imaging techniques.

4.
Opt Lett ; 35(15): 2615-7, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20680076

RESUMO

Volume x-ray gratings consisting of a multilayer coating deposited on a blazed substrate can diffract with very high efficiency, even in high orders if diffraction conditions in-plane (grating) and out-of-plane (Bragg multilayer) are met simultaneously. This remarkable property, however, depends critically on the ability to create a structure with near atomic perfection. In this Letter we report on a method to produce these structures. We report measurements that show, for a 5000l/mm grating diffracting in the third order, a diffraction efficiency of 37.6% at a wavelength of 13.6nm. This work now shows a direct route to achieving high diffraction efficiency in high order at wavelengths throughout the soft x-ray energy range.

5.
Sci Rep ; 7(1): 17245, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222514

RESUMO

We solve the nonlinear Maxwell equations in an InP-based dielectric metamaterial, considering both two-photon absorption and photo-induced free-carrier absorption. We obtain the intensity-dependent reflection, absorption, and effective permittivity and permeability of the metamaterial. Our results show that nonlinear absorption dampens both the electric and magnetic Mie resonance, although the magnetic resonance is more affected because it occurs at longer wavelengths where the free-carrier absorption cross section is larger. Owing to field concentration in the metamaterial at resonance, the threshold intensity for nonlinear absorption is reduced by a factor of about 30 compared to a homogeneous layer of the same thickness. Our results have implications on the use of dielectric metamaterials for nonlinear applications such as higher harmonic generation, optical limiting, and ultrafast modulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA