Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866588

RESUMO

BACKGROUND: Adoptive cancer immunotherapy, using engineered T-cells, expressing chimeric antigen receptor or autologous tumor infiltrating lymphocytes became, in recent years, a major therapeutic approach for diverse types of cancer. However, despite the transformative potential of adoptive cancer immunotherapy, this field still faces major challenges, manifested by the apparent decline of the cytotoxic capacity of effector CD8+ T cells upon their expansion. To address these challenges, we have developed an ex vivo "synthetic immune niche" (SIN), composed of immobilized CCL21 and ICAM1, which synergistically induce an efficient expansion of antigen-specific CD8+ T cells while retaining, and even enhancing their cytotoxic potency. METHODS: To explore the molecular mechanisms through which a CCL21+ICAM1-based SIN modulates the interplay between the proliferation and cytotoxic potency of antigen-activated and CD3/CD28-activated effector CD8+ T cells, we performed integrated analysis of specific differentiation markers via flow cytometry, together with gene expression profiling. RESULTS: On day 3, the transcriptomic effect induced by the SIN was largely similar for both dendritic cell (DC)/ovalbumin (OVA)-activated and anti-CD3/CD28-activated cells. Cell proliferation increased and the cells exhibited high killing capacity. On day 4 and on, the proliferation/cytotoxicity phenotypes became radically "activation-specific"; The DC/OVA-activated cells lost their cytotoxic activity, which, in turn, was rescued by the SIN treatment. On longer incubation, the cytotoxic activity further declined, and on day7, could not be rescued by the SIN. SIN stimulation following activation with anti-CD3/CD28 beads induced a major increase in the proliferative phenotype while transiently suppressing their cytotoxicity for 2-3 days and fully regaining their killing activity on day 7. Potential molecular regulatory pathways of the SIN effects were identified, based on transcriptomic and multispectral imaging profiling. CONCLUSIONS: These data indicate that cell proliferation and cytotoxicity are negatively correlated, and the interplay between them is differentially regulated by the mode of initial activation. The SIN stimulation greatly enhances the cell expansion, following both activation modes, while displaying high survival and cytotoxic potency at specific time points following stimulation, suggesting that it could effectively reinforce adoptive cancer immunotherapy.


Assuntos
Proliferação de Células , Quimiocina CCL21 , Molécula 1 de Adesão Intercelular , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Quimiocina CCL21/metabolismo , Ativação Linfocitária , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica
2.
Nat Commun ; 13(1): 7199, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443319

RESUMO

Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Genes Reguladores , Proteínas Serina-Treonina Quinases/genética , Mama , Repressão Psicológica , Correpressor 1 de Receptor Nuclear/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA