Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Fluoresc ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483693

RESUMO

Design and fabrication of integrated multifunctional probes with intrinsic catalytic and detection abilities is of great importance to simplify the operation in biosensing application with high sensitivity. Herein, dual-emitting lanthanide coordination polymers (Ln-CPs) were facilely prepared by self-assembly of guanine diphosphate (GDP), terephthalic acid (TA), Tb3+ and Cu2+ designated as Tb/Cu-GDP/TA CPs. The doped Cu2+ endowed CPs with obviously enhanced peroxidase mimicking activity compared with free Cu2+. In the presence of H2O2, the probe catalyzed the oxidation of TA generating a new blue fluorescent product, while the fluorescence of Tb3+ decreased simultaneously. Therefore, a new sensitive ratiometric fluorescent sensor for H2O2 has been developed with a good linear range from 0.01 to 300 µM and limit of 1.62 nM. Moreover, the proposed platform could be extended to GSH ratiometric assay in the presence of H2O2, and interestingly, the detection performance could be easily adjusted by adding different concentration of H2O2. This work will facilitate the development of luminescent nanoenzymes based on Ln-CPs to construct the simple ratiomatric sensing platform.

2.
Pacing Clin Electrophysiol ; 47(3): 373-382, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341623

RESUMO

INTRODUCTION: Takotsubo cardiomyopathy (TTC), also known as stress-induced cardiomyopathy, resembles acute heart failure syndrome but lacks disease-specific diagnosis and treatment strategies. TTC accounts for approximately 5-6% of all suspected cases of acute coronary syndrome in women. At present, animal models of TTC are often created by large amounts of exogenous catecholamines such as isoproterenol. However, isoproterenol injection cannot fully simulate the onset of stress-induced cardiomyopathy in humans since stress is not an instantaneous event. METHODS: Rats were immobilized for 6 h per day for 1-14 days. To examine whether the TTC model was successful, echocardiography was employed; Elisa detected serum sympathetic activation markers; and the Open-Field test (OFT) was used to analyze behavioral changes in rats after stress. Western blot and histology were used to assess sympathetic remodeling, inflammation levels, and fibrosis; qRT-PCR was used to explore the levels of fibrosis and myocardial hypertrophy. The electrical stability of ventricular was determined by electrophysiological testing. RESULTS: The rats showed severe stress behavior and local sympathetic remodeling of the heart after only 1 day of stress. After 3 days of stress, the induction of ventricular tachyarrhythmia increased prominently. The highest incidence of TTC in rats was at 5 days of immobilization stress. The pathological left ventricular remodeling caused by immobilization (IMO) stress includes inflammatory infiltration, fibrosis, and myocardial hypertrophy. CONCLUSIONS: Our study confirms the hypothesis that IMO stress can mimic Takotsubo cardiomyopathy, and the various effects on the heart depending on the duration of IMO stress. We observed the highest incidence of TTC occurred after 5 days of stress. Furthermore, there is a gradual occurrence of electrical and structural remodeling as the stress duration prolongs.


Assuntos
Cardiomiopatia de Takotsubo , Humanos , Feminino , Animais , Ratos , Cardiomiopatia de Takotsubo/diagnóstico , Isoproterenol , Coração , Fibrose , Hipertrofia/complicações
3.
Environ Res ; 249: 118421, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325790

RESUMO

Root exudate is a major source of soil organic matter and can significantly affect arsenic (As) migration and transformation in paddy soils. Citric acid is the main component of rice root exudate, however, the impacts and rules of citric acid on As bioavailability and rhizobacteria in different soils remains unclear. This study investigated the effects of citric acid on As transformation and microbial community in ten different paddy soils by flooded soil culture experiments. The results showed that citric acid addition increased total As and arsenate (As(V)) in the soil porewater by up to 41-fold and 65-fold, respectively, after 2-h incubation. As(V) was the main As species in soil porewater within 10 days with the addition of citric acid. Non-specifically sorbed As of soils, total Fe and total As were the main environmental factors affecting the soil microbial communities. High-throughput sequencing analysis demonstrated that citric acid addition significantly altered the soil microbial community structure, shifting the Proteobacteria-related reducing bacteria to Firmicutes-related reducing bacteria in different paddy soils. The relative abundance of Firmicutes was promoted by 174-196%. Clostridium-related bacteria belonging to Firmicutes became the dominant genera, which is believed to regulate As release through the reductive dissolution of iron oxides or the direct reduction of As(V) to arsenite (As(III)). However, citric acid addition significantly decreased the relative abundance of Geobacter and Anaeromyxobacter, which are also typical active As(V)- and ferric-reducing bacteria. Real-time quantitative polymerase chain reaction (qPCR) also revealed that the addition of citric acid significantly decreased the relative abundances of Geobacter in the different soils by 8-28 times while the relative abundances of Clostridium increased by 2-5 times. These results provide significant insight on As transformation in different types of rice rhizospheric soils and guidance for the application of rice varieties with low citric acid exuding to restrict As accumulation.


Assuntos
Arsênio , Ácido Cítrico , Oryza , Microbiologia do Solo , Poluentes do Solo , Arsênio/análise , Poluentes do Solo/análise , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Solo/química
4.
Ecotoxicol Environ Saf ; 282: 116716, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018734

RESUMO

Anaerobic methane oxidation (AOM) can drive soil arsenate reduction, a process known as methane-dependent arsenate reduction (M-AsR), which is a critical driver of arsenic (As) release in soil. Low molecular weight organic acids (LMWOAs), an important component of rice root exudates, have an unclear influence and mechanism on the M-AsR process. To narrow this knowledge gap, three typical LMWOAs-citric acid, oxalic acid, and acetic acid-were selected and added to As-contaminated paddy soils, followed by the injection of 13CH4 and incubation under anaerobic conditions. The results showed that LMWOAs inhibited the M-AsR process and reduced the As(III) concentration in soil porewater by 35.1-65.7 % after 14 days of incubation. Among the LMWOAs, acetic acid exhibited the strongest inhibition, followed by oxalic and citric acid. Moreover, LMWOAs significantly altered the concentrations of ferrous iron and dissolved organic carbon in the soil porewater, consequently impacting the release of As in the soil. The results of qPCR and sequencing analysis indicated that LMWOAs inhibited the M-AsR process by simultaneously suppressing microbes associated with ANME-2d and arrA. Our findings provide a theoretical basis for modulating the M-AsR process and enhance our understanding of the biogeochemical cycling of As in paddy soils under rhizosphere conditions.

5.
Nutr Metab Cardiovasc Dis ; 33(12): 2464-2470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37798231

RESUMO

BACKGROUND AND AIMS: Hyperuricemia has become a vital public health problem affecting the health of residents. The visceral fat area (VFA) is closely related to many chronic diseases. However, the association between VFA and hyperuricemia within the Chinese adult population remains nebulous. The aim of the research is to assess the relationship between VFA and serum uric acid levels. METHODS AND RESULTS: From June 2020 to June 2021, a total of 340 Chinese adults (240 in the control group and 100 in the hyperuricemia group) were recruited from the physical examination center of Hongqi Hospital Affiliated to Mudanjiang Medical University. General demographic characteristics were collected by questionnaire. VFA was measured by a body composition analyzer, and serum biochemical indices were detected by clinical laboratory. VFA in the hyperuricemia group was higher than in the control group (P<0.05). Further, VFA demonstrated a positive correlation with serum uric acid level (rs = 0.370, P<0.001). To further explore this relationship, we divided the VFA into quartiles (<P25, P25-P50, P50-P75, ≥P75). Upon comparison with the <P25 group, we found the VFA in the P25-P50, P50-P75, and ≥P75 groups to be associated with a substantially escalated risk of hyperuricemia, even after adjusting for age, gender, body weight, fasting plasma glucose, calcium, alanine transaminase, urea, alkaline phosphatase, and γ-glutamyltransferase. The OR and 95% CI were 2.547 (1.023, 6.341), 3.788 (1.409, 10.187) and 3.723 (1.308, 10.595), respectively (P<0.05). CONCLUSION: VFA has a positive correlation with serum uric acid levels and may serve as a crucial predictive marker for hyperuricemia.


Assuntos
Hiperuricemia , Ácido Úrico , Humanos , Adulto , Estudos Transversais , Gordura Intra-Abdominal , Hiperuricemia/diagnóstico , Hiperuricemia/epidemiologia , População do Leste Asiático
6.
J Environ Sci (China) ; 127: 410-420, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522072

RESUMO

Root exudates are crucial for plants returning organic matter to soils, which is assumed to be a major source of carbon for the soil microbial community. This study investigated the influence of root exudates on the fate of arsenic (As) with a lab simulation experiment. Our findings suggested that root exudates had a dose effect on the soil physicochemical properties, As speciation transformation and the microbial community structure at different concentrations. The addition of root exudates increased the soil pH while decreased the soil redox potential (Eh). These changes in the soil pH and Eh increased As and ferrous (Fe(II)) concentrations in soil porewater. Results showed that 40 mg/L exudates addition significantly increased arsenite (As(III)) and arsenate (As(V)) by 541 and 10 times respectively within 30 days in soil porewater. The relative abundance of Fe(III)-reducing bacteria Geobacter and Anaeromyxobacter increased with the addition of root exudates, which enhanced microbial Fe reduction. Together these results suggest that investigating how root exudates affect the mobility and transformation of As in paddy soils is helpful to systematically understand the biogeochemical cycle of As in soil-rice system, which is of great significance for reducing the health risk of soil As contamination.


Assuntos
Arsênio , Microbiota , Oryza , Poluentes do Solo , Arsênio/análise , Solo/química , Poluentes do Solo/análise , Ferro/química , Oxirredução , Oryza/química , Exsudatos e Transudatos/química
7.
Environ Sci Technol ; 56(12): 8142-8154, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35654440

RESUMO

Copper oxide nanoparticles (CuO NPs) are widely used as fungicides in agriculture. Arsenic (As) is a ubiquitous contaminant in paddy soil. The present study was focused on the adsorption behavior of CuO NPs with regard to As as well as the characteristics of the microbial community changes in As-contaminated soil-rice systems in response to CuO NPs. The study found that CuO NPs could be a temporary sink of As in soil; a high dose of CuO NPs promoted the release of As from crystalline iron oxide, which increased the As content in the liquid phase. The study also found that the As bioavailability changed significantly when the dose of CuO NPs was higher than 50 mg kg-1 in the soil-rice system. The addition of 100 mg kg-1 CuO NPs increased the microbial diversity and the abundance of genes involved in As cycling, decreased the abundance of Fe(III)-reducing bacteria and sulfate-reducing genes, and decreased As accumulation in grains. Treatment with 500 mg kg-1 CuO NPs increased the abundance of Fe(III)-reducing bacteria and sulfate-reducing genes, decreased Fe plaques, and increased As accumulation in rice. The adverse effects of CuO NPs on crops and associated risks need to be considered carefully.


Assuntos
Arsênio , Nanopartículas Metálicas , Nanopartículas , Oryza , Poluentes do Solo , Adsorção , Arsênio/análise , Bactérias/genética , Cobre/química , Compostos Férricos , Nanopartículas Metálicas/química , Óxidos , Solo/química , Poluentes do Solo/química , Sulfatos
8.
Anal Chem ; 93(41): 13960-13966, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34605640

RESUMO

DNA-based nanoprobes have attracted extensive interest in the field of bioanalysis. Notably, engineered DNA nanoprobes that can respond to multiple pathological parameters are desirable to detect targets precisely. Here we design a split aptamer/DNAzyme (aptazyme)-based DNA probe for fluorescence detection of ATP and further develop a cooperatively activatable DNA nanoprobe for tumor-specific imaging of ATP in vivo. The DNA nanoprobes comprising split aptazyme-coated MnO2 nanovectors have high stability and are synergistically activated by multiple biomarkers, GSH and ATP. Upon stimuli by overexpressed GSH in tumor cells, this DNA nanoprobe can release the aptazyme and self-supply cofactor Mn2+ of the DNAzyme. Sequentially, intracellular ATP induces the proper folding of the split ATP aptamer and Mn2+-dependent DNAzyme, which activates the specific cleavage of substrate and generates the optical readout signal. This nanoprobe exhibits remarkable resistance to enzymatic degradation, satisfactory biosafety, identifies ATP specifically within cancer cells, and selectively lights up solid tumors. Our research provides a reliable method for ATP imaging in cancer cells and opens a new avenue for biochemical research and highly accurate disease diagnosis.


Assuntos
DNA Catalítico , Neoplasias , Trifosfato de Adenosina , DNA , Compostos de Manganês , Neoplasias/diagnóstico por imagem , Imagem Óptica , Óxidos
9.
Anal Chem ; 93(31): 11052-11059, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324305

RESUMO

Functional DNA nanostructures have been widely used in various bioassay fields. Yet, the programmable assembly of functional DNA nanostructures in living cells still represents a challenging goal for guaranteeing the sensitive and specific biosensing utility. In this work, we report a self-catalytic DNA assembly (SDA) machine by using a feedback deoxyribozyme (DNAzyme)-amplified branched DNA assembly. This SDA system consists of catalytic self-assembly (CSA) and DNAzyme amplification modules for recognizing and amplifying the target analyte. The analyte initiates the CSA reaction, leading to the formation of Y-shaped DNA that carries two RNA-cleaving DNAzymes. One DNAzyme can then successively cleave the corresponding substrate and generate numerous additional inputs to activate new CSA reactions, thus realizing a self-catalytic amplification reaction. Simultaneously, the other DNAzyme is assembled as a versatile signal transducer for cleaving the fluorophore/quencher-modified substrate, leading to the generation of an amplified fluorescence readout. By incorporating a flexible auxiliary sensing module, the SDA system can be converted into a universal sensing platform for detecting cancerous biomarkers, e.g., a well-known oncogene microRNA-21 (miR-21). Moreover, the SDA system realized the precise intracellular miR-21 imaging in living cells, which is attributed to the reciprocal amplification property between CSA reactions and DNAzyme biocatalysis. This compact SDA amplifier machine provides a universal and facile toolbox for the highly efficient identification of cancerous biomarkers and thus holds great potential for early cancer diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Biocatálise , DNA , DNA Catalítico/metabolismo , Corantes Fluorescentes , MicroRNAs/metabolismo
10.
Environ Sci Technol ; 55(3): 1555-1565, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33449628

RESUMO

Bioavailability and speciation of arsenic (As) are impacted by fertilization and bacteria in the rice rhizosphere. In this study, we investigated the effects of long-term manure application on As bioavailability, microbial community structure, and functional genes in a rice paddy field. The results showed that manure application did not affect total As in the soil but increased soluble As forms by 19%, increasing arsenite (As(III)) accumulation in rice grains and roots by 34 and 64% compared to a control. A real-time quantitative polymerase chain reaction (qPCR) and high-throughput sequencing analysis demonstrated that manure application increased the relative abundance of Rhizobium, Burkholderia, Sphingobium, and Sphingomonas containing arsenate reductase genes (arsC) in the rhizosphere soil, consistent with the 529% increase in arsC, which may have promoted arsenate (As(V)) reduction and increased As availability in pore water. In addition, manure application significantly altered the iron (Fe)-plaque microbial community structure and diversity. The microbes, particularly, Bradyrhizobium, Burkholderia, and Ralstonia, were mostly associated with As, Fe, and sulfur (S) cycles. This result was consistent with changes in the functional genes related to As, Fe, and S transformation. Although manure application promoted As(V) reduction (arsC) in Fe-plaque by 682%, it inhibited Fe and S reduction by decreasing FeIII reduction bacteria (Geobacteraceae) and the sulfate-reducing gene (dsrA) abundance. Further, manure application changed the composition of the microbial community that contained the arsC gene. In short, caution needs to be excised even in the soil with a low As concentration as manure application increased As(III) accumulation in rice grains.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Bactérias/genética , Compostos Férricos , Esterco , Rizosfera , Solo , Poluentes do Solo/análise
11.
Mikrochim Acta ; 187(8): 433, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638089

RESUMO

A photoelectrochemical platform for thrombin determination was developed based on Au-rGO-CuS as multiple signal amplification elements. CuInS2 QDs was used to sensitize burr-shape TiO2 (b-TiO2) to obtain a strong photocurrent. Under the specific recognition between aptamer and thrombin, a sandwichlike structure was formed and the Au-rGO-CuS-labeled aptamer (S2@Au-rGO-CuS) was immobilized on the electrode surface. This induced a sharp decrease in photocurrent. The phenomenon is mainly due to the fact that CuS NPs can competitively consume the light energy and electron donor with CuInS2/b-TiO2. The rGO can increase the amount of CuS NPs and the Au NPs can accelerate charge transferring which depress the recombination of photogenerated electrons and holes in CuS to further enhance the competitive capacity of CuS. The sandwichlike structure has a steric hindrance effect. Therefore, the S2@Au-rGO-CuS has a multiple signal amplification function for thrombin determination. Under optimal conditions, the PEC aptasensor exhibited a wide linear concentration range from 0.1 pM to 10 nM with a low detection limit of 30 fM (S/N = 3) for thrombin. Besides, the designed aptasensor performed well in the assay of human serum sample, indicating good potential for the determination of thrombin in real samples. Graphical abstract.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Trombina/análise , Cobre/química , Cobre/efeitos da radiação , DNA/química , Ouro/química , Grafite/química , Humanos , Ácidos Nucleicos Imobilizados/química , Índio/química , Índio/efeitos da radiação , Luz , Limite de Detecção , Processos Fotoquímicos , Pontos Quânticos/efeitos da radiação , Trombina/química , Titânio/química
12.
Zhongguo Zhong Yao Za Zhi ; 45(3): 518-522, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237508

RESUMO

Coumarin is an important class of natural organic compounds, which widely exists in a variety of plants and microorganisms. Coumarins have many biological activities and wide clinical applications, such as anti-tumor, anti-HIV, anti-bacterial, anti-inflammatory, anti-oxidation, anti-coagulation, but they have obvious toxic effects in rodents. It was found that the toxicity of coumarins in different animals and organs was significantly different, and high dose oral administration was more likely to produce toxic reactions. Based on the research and analysis of domestic and foreign literatures in recent 60 years, this paper mainly summarized the hepatotoxicity and pulmonary toxicity induced by coumarins, and probed into their possible mechanisms. It was found that the toxicity of coumarins had metabolic differences and species differences. The liver of rats and lungs of mice were more susceptible to coumarins. Toxic reactions occurred mainly in the second metabolic pathway of coumarin metabolism in vivo. In order to put forward safety considerations and evaluate the impact of coumarin on human body, it was found that coumarin is unlikely to produce hepatotoxicity at normal exposure level. It was also suggested that species differences due to different metabolic patterns in model animals should be carefully considered when assessing coumarin toxicity, in order to provide reference for clinical research and rational use of coumarins and improve the rational use of coumarins.


Assuntos
Cumarínicos/toxicidade , Animais , Humanos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Redes e Vias Metabólicas , Camundongos , Ratos , Especificidade da Espécie , Testes de Toxicidade
13.
Mikrochim Acta ; 186(7): 473, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243610

RESUMO

A sandwich-type electrochemical aptasensor is described for detecting the carcinoembryonic antigen (CEA) with high sensitivity and accuracy. Two kinds of nanomaterials are used. The first was obtained by modifying gold nanoparticles with reduced graphene oxide and hemin (Hemin-rGO-AuNPs). The second consists of horseradish peroxidase-modified organic-inorganic hybrid nanoflowers linked to gold nanoparticles to obtain an architecture of type HRP-Cu3(PO4)2-HNF-AuNPs). These serve as carriers for two aptamers (apt1 and apt2) against CEA. Simultaneously, they were used to catalyze the precipitation reaction between 4-chloro-1-naphthol(4-CN) and H2O2. A sandwich-type assay linked to enzyme inhibition amplification was established for electrochemical determination of CEA. Under optimal experimental conditions and by using differential pulse voltammetry, the response peak currents (best measured at -0.34 V vs. Ag/AgCl) increases linearly with the logarithm of the CEA concentration in the range between 100 fg mL-1 and 100 ng mL-1. The detection limit is as low as 29 fg mL-1. Graphical abstract Schematic representation of the sandwich-type electrochemical aptasensor based on signal inhibition amplification from biocatalytic precipitation reaction. (HRP-Cu3(PO4)2 hybrid nanoflowers: Horseradish Peroxidase-Cu3(PO4)2 hybrid nanoflowers; AuNPs: Gold Nanoparticles; Hemin-rGO-AuNPs: Hemin-Reduced Graphene Oxide-Gold Nanoparticles; BSA: Bovine Serum Albumin; CEA: Carcinoembryonic Antigen; CEAapt1: 5'-SH-(CH2)6-ATA CCA GCT TAT TCA ATT-3'; CEAapt2: 5'-NH2-(CH2)6-AGG GGG TGA AGG GAT ACC C-3'; GCE: Glassy carbon electrode; 4-CN: 4-Chloro-1-naphthol; DPV: Differential pulse voltammetry).


Assuntos
Aptâmeros de Nucleotídeos/química , Biocatálise , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário/sangue , Nanopartículas Metálicas/química , Armoracia/enzimologia , Antígeno Carcinoembrionário/química , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Hemina/química , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Naftóis/química
14.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4751-4755, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31872674

RESUMO

Taking the Zeyao Materia Medica,Benjing Fengyuan,De Pei Materia Medica,Shiyi Materia Medica,Harmful Benefits of Materia Medica as representative works in Qing Dynasty,this paper extracts text information from four aspects: drug identification,drug use,drug prevention and detoxification,constructs a drug pharmacovigilance information table of Qing Dynasty herbal works,and summarizes the drug pharmacovigilance of Qing Dynasty. Thought,in the Qing Dynasty,there were many recordings of drug pharmacovigilance. In the aspect of drug awareness,the main representative was Shi Yi Materia Medica which added many new drugs and introduced more new uses of drugs. In addition,in the aspect of drug use and prevention,the main representatives were Zeyao Materia Medica,Benjing Fengyuan,De Pei Materia Medica,and Harmful Benefits of Materia Medica. In the aspect of taboo of disease and syndrome,attention should be paid to the integration of medicine so as to make drugs closely related to clinical use. Although there is no special introduction on detoxification,it has been introduced in various medicines in the De Pei Materia Medica,Shiyi Materia Medica,which has a relatively systematic and complete drug warning ideology system of " drug identification-use-drug prevention-detoxification".This study found that the traditional pharmacovigilance thought of Qing Dynasty had the characteristics of attaching importance to the clinical application of toxic traditional Chinese medicine and the combination of medicine,which had certain guiding significance for modern clinical medication. This paper aims to explore the traditional drug pharmacovigilance knowledge in representative works of the Qing Dynasty,analyze the characteristics of the drug pharmacovigilance thought in the Qing Dynasty,and lay a foundation for clarifying the traditional drug pharmacovigilance system.


Assuntos
Medicamentos de Ervas Chinesas , Materia Medica , Medicina Tradicional Chinesa , China , Sistemas de Liberação de Medicamentos , Farmacovigilância , Registros
15.
Biomed Chromatogr ; 31(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28214354

RESUMO

Primary angle-closure glaucoma (PACG) is a severe chronic neurodegenerative disease in Asia. Identification of important metabolites associated with PACG is crucial for early intervention and advancing knowledge of the disease mechanism. We applied gas chromatography-mass spectrometry (GC-MS) for targeted metabolomic analysis on serum samples from 38 newly diagnosed PACG patients and 48 controls. Palmitoleic acid (PA), linoleic acid (LA), γ-linolenic acid (GLA) and arachidonic acid (ARA) were identified as important metabolites associated with PACG. PA and GLA were significantly elevated (p < 0.05), while LA and ARA showed a significantly decreased trend (p < 0.05) in PACG group compared with the control group. Also, significant negative correlations were observed between LA and ARA levels and intraocular pressure of the left eye (rs = -0.750, p < 0.001; rs = -0.729, p < 0.001) and the right eye (rs = -0.786, p < 0.001; rs = -0.764, p < 0.001). Serum GLA level was positively correlated with intraocular pressure of the left eye (rs = 0.233, p = 0.031) and the right eye (rs = 0.226, p = 0.036). Our findings revealed a significant difference of the serum free fatty acid metabolic profiles between PACG patients and control subjects. Furthermore, PA, LA, ARA and GLA appear to have clinical applications for the screening of PACG.


Assuntos
Ácidos Graxos Insaturados/sangue , Ácidos Graxos Insaturados/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glaucoma de Ângulo Fechado/metabolismo , Metabolômica/métodos , Idoso , Biomarcadores/sangue , Análise Discriminante , Feminino , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Análise de Componente Principal , Curva ROC , Reprodutibilidade dos Testes
16.
Anal Chim Acta ; 1297: 342370, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438228

RESUMO

BACKGROUND: Sensitive and selective analysis of low content nucleic acid sequences plays an important role in pathogen analysis, disease diagnosis and biomedicine. The electrochemical biosensor based on toehold-mediated strand displacement reaction (TMSD) is highly attractive in nucleic acid detection due to their improved sensitivity and rapid response. But the traditional TMSD carried out on the electrode always with low displacement efficiency and complicated electrode operation, resulting in compromised sensing performance. There is a great need to construct a novel TMSD based electrochemical detection strategy to overcome such challenges in nucleic acid detecting. RESULT: Herein, a triple signal amplification electrochemical aptasensor was developed for ultrasensitive detection of CYFRA21-1 DNA. The dual-output toehold mediated strand displacement reaction (dTMSD) can convert one input to two strands output within one strand displacement cycle. So that it possesses a higher efficiency for improving the sensitivity in comparison with the single-output TMSD. And the fuel strand was configured with a tail to realize successive DNA circuits through self-propelling as a DNA walker. All the above processes were carried out on magnetic beads, which is conducive to achieving effective sample purification and minimizing the background signals. Besides, Exonuclease III was further amplified signal. As a result, through the cascade use of above three technologies, the proposed biosensing strategy realized sensitive detection of target DNA with a low detection limit of 0.35 fM (S/N = 3) and wide linear range (0.5 fM-500 pM). SIGNIFICANCE: The proposed novel dTMSD combining multiple signal amplification strategies for electrochemical detection of CYFRA21-1 DNA with easy operation not only possesses excellent sensitivity and selectivity, but also has potential application value for monitoring DNA in serum. Meanwhile, the development of highly sensitive and specific CYFRA21-1 DNA detection methods is very important for the prevention and treatment of lung cancer.


Assuntos
Antígenos de Neoplasias , Ácidos Nucleicos , DNA , Eletrodos , Queratina-19
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124410, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718745

RESUMO

Tandem enzyme can catalyze some cascade reactions with high efficiency, and some few tandem enzyme-like mimics have been discovered recently. Further improving the catalytic efficiency of tandem nanoenzymes with facile method may undoubtedly promote and broaden their applications in various fields. In this work, cupric oxide nanoparticles (CuO NPs) with dual-functional enzyme mimics were synthesized using the rapid deposition method in advance, which simultaneously combined with lanthanide infinite coordination polymers (Ln ICPs) during the self-assemble of Tb3+, guanine-5'-triphosphate (GTP) and auxiliary ligand terephthalic acid (TA). Excitingly, the obtained Tb-GTP/TA@CuO ICPs, not only displayed obviously enhanced tandem catalytic activity compared with pure CuO NPs, but also provided a versatile ratiometric platform for ultrahigh selective and sensitive detection of glutathione (GSH) under single-wavelength excitation. A good linear relationship between the ratio signal and the GSH concentration was spanning from 0.001 to 20 µM with an impressive detection limit of 0.50 nM. This study opens a new and universal avenue for preparing integrated multifunctional probes by coupling of nanoenzyme catalytic activity with superior luminescent Ln ICPs through facile method.


Assuntos
Cobre , Glutationa , Elementos da Série dos Lantanídeos , Polímeros , Espectrometria de Fluorescência , Cobre/química , Glutationa/análise , Glutationa/química , Polímeros/química , Elementos da Série dos Lantanídeos/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Nanopartículas/química , Catálise , Nanopartículas Metálicas/química
18.
Anal Chim Acta ; 1317: 342920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030014

RESUMO

BACKGROUND: As a broad-spectrum tetracycline antibiotic, Oxytetracycline (OTC) was widely used in a variety of applications. But, the overuse of OTC had led to the detection of it in food, water and soil, which could present significance risk to human health and cause damage to ecosystem. It was of great significance to develop sensitive detection methods for OTC. Herein, an environmentally friendly photoelectrochemical (PEC) aptasensor was constructed for the sensitive detection of OTC based on CuO-induced BiOBr/Ag2S/PDA (Polydopamine) photocurrent polarity reversal. RESULTS: BiOBr/Ag2S/PDA composites modified electrode not only produced stable initial anodic photocurrent but also provided attachment sites for the aptamer S1 of OTC by the strong adhesion of PDA. On the other hand, CuO loaded OTC aptamer S2 (Cu-S2) was got through Cu-S bonds. After the target OTC was identified on the electrode surface, CuO was introduced to the surface of ITO/BiOBr/Ag2S/PDA through the specific binding of OTC to S2. This identification process formed dual Z-type heterojunctions and resulted in a remarkable reversal of photocurrent polarity from anodic to cathodic. Under optimization conditions, the PEC aptasensor showed a wide linear range (50 fM âˆ¼ 100 nM), low detection limit (1.9 fM), excellent selectivity, stability and reproducibility for the detection of OTC. Moreover, it was successfully used for the analysis of OTC in real samples of tap water, milk and honey, and had the potential for practical application. SIGNIFICANCE: This work developed an environmentally friendly photocurrent-polarity-switching PEC aptasensor with excellent selectivity, reproducibility, stability, low LOD and wide linear range for OTC detection. This sensitive system, which was including BiOBr, Ag2S, PDA and CuO were low toxicity, not only reduced the risk of traditional toxic semiconductors to operators and the environment, but can also be used for the detection of real samples, broadening the wider range of applications for BiOBr, Ag2S, PDA and CuO.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Bismuto , Cobre , Técnicas Eletroquímicas , Oxitetraciclina , Oxitetraciclina/análise , Cobre/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Bismuto/química , Processos Fotoquímicos , Compostos de Prata/química , Polímeros/química , Eletrodos , Animais , Limite de Detecção , Indóis/química , Antibacterianos/análise , Antibacterianos/química
19.
Int J Biol Macromol ; 263(Pt 2): 130539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432263

RESUMO

Hydroxypropyl methylcellulose (HPMC) was employed as an intermediate layer to enhance interfacial interaction between chitosan (CS) coating and tangerine fruits, thereby improving the preservation effect. Owing to the low surface tension of tangerine fruit (26.04 mN/m), CS coating solutions showed poor wetting properties on fruit peels (contact angle > 100°). However, by applying a 1.0 % (w/v) HPMC coating on fruits, the contact angle of CS solutions with concentrations of 0.5 %, 1.0 %, and 1.5 % (w/v) decreased to 47.0°, 47.4°, and 48.5°, respectively, whereas the spreading coefficient increased to -16.0 mN/m, -17.6 mN/m and -19.8 mN/m, respectively. Subsequently, the effects of the coatings on fruit quality were investigated. The results demonstrated the promising performance of HPMC-CS two-layer coating in inhibiting fruit respiration, reducing decay rate, and maintaining nutrient content. Notably, HPMC-1.5%CS coating not only reduced the decay rate of tangerine fruit by 45 % and 31 %, in comparison to the uncoated group (CK) and pure CS coating respectively, but also maintained a high content of ascorbic acid. Therefore, this study confirmed that the use of amphiphilic polymers for improving the surface properties of fruits can effectively facilitate the wetting of hydrophilic coatings on fruits, and significantly improve the fresh-keeping performance of edible coatings.


Assuntos
Quitosana , Citrus , Molhabilidade , Derivados da Hipromelose , Frutas , Conservação de Alimentos/métodos , Metilcelulose
20.
Food Chem ; 441: 138333, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38185050

RESUMO

A sensitive signal-on photoelectrochemical aptasensor for antibiotic determination was constructed based on the energy level matching between ferrocene and CuInS2. P-type CuInS2 microflower was complexed with reduced graphene oxide (CuInS2/rGO) to get photocathode current with good photoelectric conversion efficiency and stability. Then, hairpin DNA (HP) was covalently bonded to the electrode surface. A triple helix DNA (THMS) was used as a molecular switch. After the specific recognition between target and THMS in homogeneous solution, ferrocene labeled probe (Fc-T2) was released. Finally, Fc-T2 was captured by the HP, which leaded the obvious increase of photocurrent for the energy level matching between ferrocene and CuInS2. The increase of the photocurrent signal was proportional to the concentration of target amoxicillin (AMOX), the linear range was 100 fM-100 nM with detection limit of 19.57 fM. Meanwhile, the method has been successfully applied for milk and lake water samples analysis with satisfactory results.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos Ferrosos , Antibacterianos , Amoxicilina , Técnicas Biossensoriais/métodos , Metalocenos/química , Técnicas Eletroquímicas/métodos , DNA/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA