Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 903-913, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382374

RESUMO

Covalent organic frameworks (COFs) with controlled porosity, high crystallinity, diverse designability and excellent stability are very attractive in metal-free heterogeneous photocatalysis of volatile organic compounds (VOCs) degradation. In order to construct the high optimal performance COFs under feasible and universal conditions, herein, the visible light-driven hollow COFTAPB-PDA (H-COFTAPB-PDA) microcapsule was designed by a facile dual-ligand regulated sacrificial template method. The H-COFTAPB-PDA microcapsule possesses improved surface area, high crystallinity, broad absorption range and high stability, which enables enhanced substrates and visible light adsorption, photogenerated electrons-holes separation and transfer, and facilitate the generation of reactive radicals. Importantly, it was found to be a highly efficient photocatalyst for toluene degradation under visible-light irradiation compared with the solid COFTAPB-PDA, and the degradation efficiency of toluene reached 91.8 % within 180 min with the conversion rate of CO2 was 68.9 %. Additionally, the H-COFTAPB-PDA presented good recyclability and long-term stability after multiple photocatalytic reuses. Furthermore, the active sites of H-COFTAPB-PDA in photocatalytic degradation of toluene was proposed by XPS and DFT calculations, and the degradation pathway and mechanism was proposed and analyzed. The result presented great prospect of morphologic design of hollow COFs in metal-free heterogeneous photocatalysis for VOCs degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA