Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Biol Chem ; 298(8): 102179, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752365

RESUMO

Lipid droplets (LDs) are intracellular organelles that dynamically regulate lipids and energy homeostasis in the cell. LDs can grow through either local lipid synthesis or LD fusion. However, how lipids involving in LD fusion for LD growth is largely unknown. Here, we show that genetic mutation of acox-3 (acyl-CoA oxidase), maoc-1 (enoyl-CoA hydratase), dhs-28 (3-hydroxylacyl-CoA dehydrogenase), and daf-22 (3-ketoacyl-CoA thiolase), all involved in the peroxisomal ß-oxidation pathway in Caenorhabditis elegans, led to rapid fusion of adjacent LDs to form giant LDs (gLDs). Mechanistically, we show that dysfunction of peroxisomal ß-oxidation results in the accumulation of long-chain fatty acid-CoA and phosphocholine, which may activate the sterol-binding protein 1/sterol regulatory element-binding protein to promote gLD formation. Furthermore, we found that inactivation of either FAT-2 (delta-12 desaturase) or FAT-3 and FAT-1 (delta-15 desaturase and delta-6 desaturase, respectively) to block the biosynthesis of polyunsaturated fatty acids (PUFAs) with three or more double bonds (n≥3-PUFAs) fully repressed the formation of gLDs; in contrast, dietary supplementation of n≥3-PUFAs or phosphocholine bearing these PUFAs led to recovery of the formation of gLDs in peroxisomal ß-oxidation-defective worms lacking PUFA biosynthesis. Thus, we conclude that n≥3-PUFAs, distinct from other well-known lipids and proteins, promote rapid LD fusion leading to LD growth.


Assuntos
Caenorhabditis elegans , Ácidos Graxos Ômega-3 , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Coenzima A/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Gotículas Lipídicas/metabolismo , Fosforilcolina/metabolismo , Esteróis/metabolismo
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 235-246, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29237573

RESUMO

Unsaturated fatty acids (UFAs) play crucial roles in living organisms regarding development, energy metabolism, stress resistance, etc. The biosynthesis of UFAs starts from the introduction of the first double bond by stearoyl-CoA desaturase (SCD), converting saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs). This desaturation is considered to be an aerobic process that requires cytochrome b5 reductase, cytochrome b5 and SCD. However, this enzyme system remains elusive in Caenorhabditis elegans. Here, we show that inactivation by RNAi knockdown or mutation (gk442189) of putative cytochrome b5 genes cytb-5.1 led to reduced conversion of C18:0 to C18:1(n-9) by SCD desaturases FAT-6/7 in C. elegans. On the contrary, cytb-5.2RNAi and cytb-5.2(gk113588) mutant worms showed decreased conversion of C16:0 to C16:1(n-7) by FAT-5 desaturase. Dietary supplementation with C18:1(n-9) and C18:2(n-6) also showed that CYTB-5.1 is likely required for the activity of FAT-6/7 desaturases, but not for FAT-1 to FAT-4 desaturases. Interestingly, co-immunoprecipitation (Co-IP) demonstrated that either FAT-7 or FAT-5 has ability to interact with both CYTB-5.1 and CYTB-5.2. Moreover, RNAi knockdown of cytb-5.1 upregulates the transcriptional and translational expression of fat-5 to fat-7, which may be due to the feedback induction by reduced C18:1(n-9) and downstream fatty acids. Furthermore, both CYTB-5.1 and CYTB-5.2 are involved in fat accumulation, fertility and lifespan in worms, which may be independent of changes in fatty acid compositions. Collectively, these findings for the first time reveal the differential regulation of various SCDs by distinct cytochrome b5 CYTB-5.1 and CYTB-5.2 in the biosynthesis of UFAs in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Citocromos b5/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Estearoil-CoA Dessaturase/biossíntese , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citocromos b5/genética , Fertilidade/fisiologia , Longevidade/fisiologia , Estearoil-CoA Dessaturase/genética
3.
J Lipid Res ; 58(9): 1845-1854, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28710073

RESUMO

Maintenance of lipid homeostasis is crucial for cells in response to lipid requirements or surplus. The SREBP transcription factors play essential roles in regulating lipid metabolism and are associated with many metabolic diseases. However, SREBP regulation of lipid metabolism is still not completely understood. Here, we showed that reduction of SBP-1, the only homolog of SREBPs in Caenorhabditis elegans, surprisingly led to a high level of zinc. On the contrary, zinc reduction by mutation of sur-7, encoding a member of the cation diffusion facilitator (CDF) family, restored the fat accumulation and fatty acid profile of the sbp-1(ep79) mutant. Zinc reduction resulted in iron overload, which thereby directly activated the conversion activity of stearoyl-CoA desaturase (SCD), a main target of SREBP, to promote lipid biosynthesis and accumulation. However, zinc reduction reversely repressed SBP-1 nuclear translocation and further downregulated the transcription expression of SCD for compensation. Collectively, we revealed zinc-mediated regulation of the SREBP-SCD axis in lipid metabolism, distinct from the negative regulation of SREBP-1 or SREBP-2 by phosphatidylcholine or cholesterol, respectively, thereby providing novel insights into the regulation of lipid homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Metabolismo dos Lipídeos , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Tecido Adiposo/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genômica , Mutação , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fatores de Transcrição/genética
4.
Biochim Biophys Acta ; 1861(4): 310-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26806391

RESUMO

Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Citocromo-B(5) Redutase/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Citocromo-B(5) Redutase/genética , Ácidos Graxos Dessaturases/genética , Gotículas Lipídicas/metabolismo , Reprodução , Fatores de Tempo
5.
Nanotechnology ; 27(31): 315602, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27345100

RESUMO

Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag(+) luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

6.
Molecules ; 21(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763516

RESUMO

Due to misbalanced energy surplus and expenditure, obesity has become a common chronic disorder that is highly associated with many metabolic diseases. Pu-erh tea, a traditional Chinese beverage, has been believed to have numerous health benefits, such as anti-obesity. However, the underlying mechanisms of its anti-obesity effect are yet to be understood. Here, we take the advantages of transcriptional profile by RNA sequencing (RNA-Seq) to view the global gene expression of Pu-erh tea. The model organism Caenorhabditis elegans was treated with different concentrations of Pu-erh tea water extract (PTE, 0 g/mL, 0.025 g/mL, and 0.05 g/mL). Compared with the control, PTE indeed decreases lipid droplets size and fat accumulation. The high-throughput RNA-Sequence technique detected 18073 and 18105 genes expressed in 0.025 g/mL and 0.05 g/mL PTE treated groups, respectively. Interestingly, the expression of the vitellogenin family (vit-1, vit-2, vit-3, vit-4 and vit-5) was significantly decreased by PTE, which was validated by qPCR analysis. Furthermore, vit-1(ok2616), vit-3(ok2348) and vit-5(ok3239) mutants are insensitive to PTE triggered fat reduction. In conclusion, our transcriptional profile by RNA-Sequence suggests that Pu-erh tea lowers the fat accumulation primarily through repression of the expression of vit(vitellogenin) family, in addition to our previously reported (sterol regulatory element binding protein) SREBP-SCD (stearoyl-CoA desaturase) axis.


Assuntos
Caenorhabditis elegans/genética , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Vitelogeninas/genética , Tecido Adiposo/efeitos dos fármacos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Medicamentos de Ervas Chinesas/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Família Multigênica/efeitos dos fármacos , Mutação , Chás de Ervas/análise
7.
Clin Exp Pharmacol Physiol ; 42(9): 940-949, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26175075

RESUMO

It has been well established that neurogenic inflammation is one of the major pathological processes underlying inflammatory pain, but there are few effective anti-inflammatory drugs to alleviate such pain. The present study shows that minocycline, a widely used glial activation inhibitor, is effective in reducing neurogenic inflammation. Patch-clamp recordings showed that small sized dorsal root ganglion (DRG) neurons were dramatically excited following intradermal capsaicin injection in the rat hind paw, evidenced by decreased rheobase and membrane threshold. Pretreatment with minocycline (30 mg/kg for 1 day, intraperitoneal injection) blocked the increased neuronal excitability. Western blot and immunostaining of DRG revealed the activation of satellite glial cells (SGCs) following capsaicin injection. The up-regulation of glial fibrillary acidic protein (GFAP) was significantly inhibited by minocycline pre-administration. Measurement of tumor necrosis factor α (TNF-α) and its receptor, TNF-α receptor 1 (TNFR1), showed that minocycline mainly blocked the up-regulation of TNF-α in SGCs and TNFR1s in neurons following capsaicin injection. The pivotal role of TNF-α in neurogenic inflammation was further supported by the findings that incubation DRG with TNF-α mimicked the increased excitability of DRG neurons induced by capsaicin injection, and that TNF-α application enhanced cutaneous vasodilation in the hind paws induced by antidromic electrical stimulation of dorsal roots. Based on these results, we propose that minocycline is a potential therapeutic drug that can reduce neuronal excitability and neurogenic inflammation by working on SGCs to inhibit the expression of TNF-α.

8.
J Cell Biol ; 223(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551495

RESUMO

Lipid droplets (LDs) are composed of a core of neutral lipids wrapped by a phospholipid (PL) monolayer containing several hundred proteins that vary between different cells or organisms. How LD proteins target to LDs is still largely unknown. Here, we show that RNAi knockdown or gene mutation of let-767, encoding a member of hydroxysteroid dehydrogenase (HSD), displaced the LD localization of three well-known LD proteins: DHS-3 (dehydrogenase/reductase), PLIN-1 (perilipin), and DGAT-2 (diacylglycerol O-acyltransferase 2), and also prevented LD growth in Caenorhabditis elegans. LET-767 interacts with ARF-1 (ADP-ribosylation factor 1) to prevent ARF-1 LD translocation for appropriate LD protein targeting and lipid homeostasis. Deficiency of LET-767 leads to the release of ARF-1, which further recruits and promotes translocation of ATGL-1 (adipose triglyceride lipase) to LDs for lipolysis. The displacement of LD proteins caused by LET-767 deficiency could be reversed by inhibition of either ARF-1 or ATGL-1. Our work uncovers a unique LET-767 for determining LD protein targeting and maintaining lipid homeostasis.


Assuntos
Oxirredutases do Álcool , Proteínas de Caenorhabditis elegans , Gotículas Lipídicas , Homeostase , Lipase/genética , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos , Lipólise/fisiologia , Proteínas/metabolismo , Caenorhabditis elegans , Animais , Oxirredutases do Álcool/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
9.
J Lipid Res ; 54(9): 2504-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23787165

RESUMO

Fatty acid desaturation regulates membrane function and fat storage in animals. To determine the contribution of stearoyl-CoA desaturase (SCD) activity on fat storage and development in the nematode Caenorhabditis elegans, we analyzed the lipid composition and lipid droplet size in the fat-6;fat-7 desaturase mutants independently and in combination with mutants disrupted in conserved lipid metabolic pathways. C. elegans with impaired SCD activity displayed both reduced fat stores and decreased lipid droplet size. Mutants in the daf-2 (insulin-like growth factor receptor), rsks-1 (homolog of p70S6 kinase, an effector of the target of rapamycin signaling pathway), and daf-7 (transforming growth factor ß) displayed high fat stores, the opposite of the low fat observed in the fat-6;fat-7 desaturase mutants. The metabolic mutants in combination with fat-6;fat-7 displayed low fat stores, with the exception of the daf-2;fat-6;fat-7 triple mutants, which had increased de novo fatty acid synthesis and wild-type levels of fat stores. Notably, SCD activity is required for the formation of large-sized lipid droplets in all mutant backgrounds, as well as for normal ratios of phosphatidylcholine (PC) to phosphatidylethanolamine (PE). These studies reveal previously uncharacterized roles for SCD in the regulation of lipid droplet size and membrane phospholipid composition.


Assuntos
Fosfolipídeos/química , Fosfolipídeos/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos Insaturados/biossíntese , Mutação , Ácido Oleico/farmacologia , Oxirredução
10.
BMC Genomics ; 14: 164, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23496871

RESUMO

BACKGROUND: Animal models are indispensable to understand the lipid metabolism and lipid metabolic diseases. Over the last decade, the nematode Caenorhabditis elegans has become a popular animal model for exploring the regulation of lipid metabolism, obesity, and obese-related diseases. However, the genomic and functional conservation of lipid metabolism from C. elegans to humans remains unknown. In the present study, we systematically analyzed genes involved in lipid metabolism in the C. elegans genome using comparative genomics. RESULTS: We built a database containing 471 lipid genes from the C. elegans genome, and then assigned most of lipid genes into 16 different lipid metabolic pathways that were integrated into a network. Over 70% of C. elegans lipid genes have human orthologs, with 237 of 471 C. elegans lipid genes being conserved in humans, mice, rats, and Drosophila, of which 71 genes are specifically related to human metabolic diseases. Moreover, RNA-mediated interference (RNAi) was used to disrupt the expression of 356 of 471 lipid genes with available RNAi clones. We found that 21 genes strongly affect fat storage, development, reproduction, and other visible phenotypes, 6 of which have not previously been implicated in the regulation of fat metabolism and other phenotypes. CONCLUSIONS: This study provides the first systematic genomic insight into lipid metabolism in C. elegans, supporting the use of C. elegans as an increasingly prominent model in the study of metabolic diseases.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Bases de Dados Genéticas , Metabolismo dos Lipídeos/genética , Animais , Genômica , Humanos , Lipídeos/genética , Obesidade/genética , Fenótipo , Interferência de RNA
11.
J Nanosci Nanotechnol ; 12(3): 2126-35, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755030

RESUMO

The toxic effects of ZnO nanoparticles (nano-ZnO) (1-100 microg/mL) suspended in DMEM were examined in human A549 cells, HepG2 cells, human skin fibroblast cells, human skin keratinocytes, and rat primary neuronal cells for 24 h. Nano-ZnO induced dose dependent cytotoxicity and damaged cell membranes. Cell death was not mediated by reactive oxygen species (ROS) or apoptosis. Nano-ZnO induced DNA damage in rat primary neuronal cells, human fibroblasts, and A549 cells. The cytotoxicity of nano-ZnO in DMEM supplemented with 10% FBS, instead of serum free DMEM, was also examined in the A549 cells, human skin fibroblast cells, and human skin keratinocytes. The levels of cytotoxicity induced were similar to those tested without FBS; in addition, ROS was observed. These results indicate that the cause of cytotoxicity is medium dependent and imply that cellular growth conditions may play a significant role in induction of cytotoxicity and DNA damage by nano-ZnO.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Nanopartículas , Neurônios/efeitos dos fármacos , Óxido de Zinco/farmacologia , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Células Cultivadas , Imunofluorescência , Glutationa/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Neurônios/citologia , Neurônios/metabolismo , Tamanho da Partícula , Ratos
12.
Comput Intell Neurosci ; 2022: 6951532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958754

RESUMO

Computer vision is an interesting branch of artificial intelligence which is dedicated to how electronic devices can achieve the level of capabilities to perceive things just like ordinary human beings do. In order to solve the poor effect of video for the detection of target in football matches and the low accuracy of target tracking, this paper aims to make a deep exploration of the methods of video for the detection of target and tracking in football matches. The video moving for the detection of target method based on background model is used to extract the image in the background of the matching video which improves the light flow field. Secondly, the video differential image is acquired according to the difference of colors, the ghost target of the image in the video background model is scientifically determined, the ghost degree of the pixel points of the image is scientifically determined, and the flicker matrix of the target image is constructed. The number of pixels of the moving target is derived. A meanshift-based video target tracking algorithm is used in conjunction for the detection of target result to determine whether to track the target image until the overall video target tracking task is completed, move the central position of the target frame and background frame to the target position, select the best one to adapt to the target change, and determine whether to track the target image until the overall video target tracking task is completed. The simulation results suggest that the approach described in this study is capable of detecting and tracking moving objects, as well as improving target recognition and tracking accuracy.


Assuntos
Inteligência Artificial , Futebol Americano , Algoritmos , Simulação por Computador , Humanos , Gravação em Vídeo/métodos
13.
Front Pharmacol ; 13: 1061842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569303

RESUMO

As the body's critical metabolic organ, the liver plays an essential role in maintaining proper body homeostasis. However, as people's living standards have improved and the number of unhealthy lifestyles has increased, the liver has become overburdened. These have made liver disease one of the leading causes of death worldwide. Under the influence of adverse factors, liver disease progresses from simple steatosis to hepatitis, to liver fibrosis, and finally to cirrhosis and cancer, followed by increased mortality. Until now, there has been a lack of accepted effective treatments for liver disease. Based on current research, antisense oligonucleotide (ASO), as an alternative intervention for liver diseases, is expected to be an effective treatment due to its high efficiency, low toxicity, low dosage, strong specificity, and additional positive characteristics. In this review, we will first introduce the design, modification, delivery, and the mechanisms of ASO, and then summarize the application of ASO in liver disease treatment, including in non-alcoholic fatty liver disease (NAFLD), hepatitis, liver fibrosis, and liver cancer. Finally, we discuss challenges and perspectives on the transfer of ASO drugs into clinical use. This review provides a current and comprehensive understanding of the integrative and systematic functions of ASO for its use in liver disease.

14.
Cell Rep ; 38(2): 110206, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021096

RESUMO

Mitochondria are known as the powerhouse of the cell. Dysfunction of mitochondria homeostasis induces the mitochondrial unfolded protein response (UPRmt), altering cellular metabolism. How cells sense the UPRmt to rewire metabolism is largely unknown. Here, we show that inactivation of either the citric/tricarboxylic acid (TCA) cycle enzymes aco-2 or idha-1, which encode aconitase and isocitrate dehydrogenase respectively, leads to citrate accumulation. In Caenorhabditis elegans, both in vitro and in vivo, citrate accumulation consequently triggers the UPRmt and also promotes lipid accumulation. The transcription factor DVE-1 binds to the promoter of the nuclear hormone receptor nhr-80 to transactivate its expression. NHR-80 then upregulates lipogenesis and lipid accumulation, shifting excess citrate for use in lipogenesis and for storage as triacylglycerol in lipid droplets. Inactivation of DVE-1 or NHR-80 fully abolishes the citrate-induced lipid accumulation. Therefore, our work uncovers a DVE-1-NHR-80-lipogenesis axis linking the transmission of the mitochondrial stress signal to lipid metabolism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Ácido Cítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Homeostase , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo
15.
J Genet Genomics ; 49(4): 338-349, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240304

RESUMO

Liver fibrosis is a key transformation stage and also a reversible pathological process in various types of chronic liver diseases. However, the pathogenesis of liver fibrosis still remains elusive. Here, we report that the calcium binding protein A11 (S100A11) is consistently upregulated in the integrated data from GSE liver fibrosis and tree shrew liver proteomics. S100A11 is also experimentally activated in liver fibrosis in mouse, rat, tree shrew, and human with liver fibrosis. While overexpression of S100A11 in vivo and in vitro exacerbates liver fibrosis, the inhibition of S100A11 improves liver fibrosis. Mechanistically, S100A11 activates hepatic stellate cells (HSCs) and the fibrogenesis process via the regulation of the deacetylation of Smad3 in the TGF-ß signaling pathway. S100A11 physically interacts with SIRT6, a deacetylase of Smad2/3, which may competitively inhibit the interaction between SIRT6 and Smad2/3. The subsequent release and activation of Smad2/3 promote the activation of HSCs and fibrogenesis. Additionally, a significant elevation of S100A11 in serum is observed in clinical patients. Our study uncovers S100A11 as a novel profibrogenic factor in liver fibrosis, which may represent both a potential biomarker and a promising therapy target for treating liver fibrosis and fibrosis-related liver diseases.


Assuntos
Transdução de Sinais , Sirtuínas , Animais , Humanos , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Ratos , Transdução de Sinais/fisiologia , Sirtuínas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
16.
Front Pharmacol ; 12: 696603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234682

RESUMO

With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.

17.
Cell Mol Gastroenterol Hepatol ; 11(3): 697-724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33075563

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is becoming a severe liver disorder worldwide. Autophagy plays a critical role in liver steatosis. However, the role of autophagy in NAFLD remains exclusive and under debate. In this study, we investigated the role of S100 calcium binding protein A11 (S100A11) in the pathogenesis of hepatic steatosis. METHODS: We performed liver proteomics in a well-established tree shrew model of NAFLD. The expression of S100A11 in different models of NAFLD was detected by Western blot and/or quantitative polymerase chain reaction. Liver S100A11 overexpression mice were generated by injecting a recombinant adenovirus gene transfer vector through the tail vein and then induced by a high-fat and high-cholesterol diet. Cell lines with S100a11 stable overexpression were established with a recombinant lentiviral vector. The lipid content was measured with either Bodipy staining, Oil Red O staining, gas chromatography, or a triglyceride kit. The autophagy and lipogenesis were detected in vitro and in vivo by Western blot and quantitative polymerase chain reaction. The functions of Sirtuin 1, histone deacetylase 6 (HDAC6), and FOXO1 were inhibited by specific inhibitors. The interactions between related proteins were analyzed by a co-immunoprecipitation assay and immunofluorescence analysis. RESULTS: The expression of S100A11 was up-regulated significantly in a time-dependent manner in the tree shrew model of NAFLD. S100A11 expression was induced consistently in oleic acid-treated liver cells as well as the livers of mice fed a high-fat diet and NAFLD patients. Both in vitro and in vivo overexpression of S100A11 could induce hepatic lipid accumulation. Mechanistically, overexpression of S100A11 activated an autophagy and lipogenesis process through up-regulation and acetylation of the transcriptional factor FOXO1, consequently promoting lipogenesis and lipid accumulation in vitro and in vivo. Inhibition of HDAC6, a deacetylase of FOXO1, showed similar phenotypes to S100A11 overexpression in Hepa 1-6 cells. S100A11 interacted with HDAC6 to inhibit its activity, leading to the release and activation of FOXO1. Under S100A11 overexpression, the inhibition of FOXO1 and autophagy could alleviate the activated autophagy as well as up-regulated lipogenic genes. Both FOXO1 and autophagy inhibition and Dgat2 deletion could reduce liver cell lipid accumulation significantly. CONCLUSIONS: A high-fat diet promotes liver S100A11 expression, which may interact with HDAC6 to block its binding to FOXO1, releasing or increasing the acetylation of FOXO1, thus activating autophagy and lipogenesis, and accelerating lipid accumulation and liver steatosis. These findings indicate a completely novel S100A11-HDAC6-FOXO1 axis in the regulation of autophagy and liver steatosis, providing potential possibilities for the treatment of NAFLD.


Assuntos
Proteína Forkhead Box O1/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas S100/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hepatócitos , Humanos , Lipogênese/genética , Fígado/patologia , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas S100/genética , Tupaiidae , Regulação para Cima
18.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623380

RESUMO

In eukaryote cells, lipid droplets (LDs) are key intracellular organelles that dynamically regulate cellular energy homeostasis. LDs originate from the ER and continuously contact the ER during their growth. How the ER affects LD growth is largely unknown. Here, we show that RNAi knockdown of acs-1, encoding an acyl-CoA synthetase required for the biosynthesis of monomethyl branched-chain fatty acids C15iso and C17iso, remarkably prevented LD growth in Caenorhabditis elegans. Dietary C17iso, or complex lipids with C17iso including phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol, could fully restore the LD growth in the acs-1RNAi worms. Mechanistically, C17iso may incorporate into phospholipids to ensure the membrane integrity of the ER so as to maintain the function of ER-resident enzymes such as SCD/stearoyl-CoA desaturase and DGAT2/diacylglycerol acyltransferase for appropriate lipid synthesis and LD growth. Collectively, our work uncovers a unique fatty acid, C17iso, as the side chain of phospholipids for determining the ER homeostasis for LD growth in an intact organism, C. elegans.


Assuntos
Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Membranas/metabolismo , Fosfolipídeos/metabolismo , Interferência de RNA/fisiologia
19.
Mol Biol Evol ; 26(12): 2849-64, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19723671

RESUMO

There is no generally accepted picture of where, when, and how the domestic dog originated. Previous studies of mitochondrial DNA (mtDNA) have failed to establish the time and precise place of origin because of lack of phylogenetic resolution in the so far studied control region (CR), and inadequate sampling. We therefore analyzed entire mitochondrial genomes for 169 dogs to obtain maximal phylogenetic resolution and the CR for 1,543 dogs across the Old World for a comprehensive picture of geographical diversity. Hereby, a detailed picture of the origins of the dog can for the first time be suggested. We obtained evidence that the dog has a single origin in time and space and an estimation of the time of origin, number of founders, and approximate region, which also gives potential clues about the human culture involved. The analyses showed that dogs universally share a common homogenous gene pool containing 10 major haplogroups. However, the full range of genetic diversity, all 10 haplogroups, was found only in southeastern Asia south of Yangtze River, and diversity decreased following a gradient across Eurasia, through seven haplogroups in Central China and five in North China and Southwest (SW)Asia, down to only four haplogroups in Europe. The mean sequence distance to ancestral haplotypes indicates an origin 5,400-16,300 years ago (ya) from at least 51 female wolf founders. These results indicate that the domestic dog originated in southern China less than 16,300 ya, from several hundred wolves. The place and time coincide approximately with the origin of rice agriculture, suggesting that the dogs may have originated among sedentary hunter-gatherers or early farmers, and the numerous founders indicate that wolf taming was an important culture trait.


Assuntos
DNA Mitocondrial/genética , Cães/genética , Filogenia , Rios , Lobos/genética , Animais , Sudeste Asiático , China , Europa (Continente) , Feminino , Pool Gênico , Genoma Mitocondrial/genética , Geografia , Haplótipos/genética , Região de Controle de Locus Gênico/genética , Dados de Sequência Molecular , Fatores de Tempo
20.
J Neurosci Res ; 87(2): 482-94, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18752301

RESUMO

A recent study by our group demonstrates pharmacologically that the transient receptor potential vanilloid-1 (TRPV(1)) is activated by intradermal injection of capsaicin to initiate neurogenic inflammation by the release of neuropeptides in the periphery. In this study, expression of TRPV(1), phosphorylated protein kinase C (p-PKC), and calcitonin gene-related peptide (CGRP) in dorsal root ganglion (DRG) neurons was visualized by using immunofluorescence, real-time PCR, and Western blots to examine whether increases in TRPV(1) mRNA and protein levels evoked by capsaicin injection are subject to modulation by the activation of PKC and to analyze the role of this process in the pathogenesis of neurogenic inflammation. Capsaicin injection into the hindpaw skin of anesthetized rats evoked increases in the expression of TRPV(1), CGRP and p-PKC in mRNA and/or protein levels and in the number of single labeled TRPV(1), p-PKC, and CGRP neurons in ipsilateral L4-5 DRGs. Coexpressions of TRPV(1) with p-PKC and/or CGRP in DRG neurons were also significantly increased after CAP injection. These evoked expressions at both molecular and cellular levels were significantly inhibited after TRPV(1) receptors were blocked by 5'-iodoresiniferatoxin (5 microg) or PKC was inhibited by chelerythrine chloride (5 microg). Taken together, these results provide evidence that up-regulation of TRPV(1) mRNA and protein levels under inflammatory conditions evoked by capsaicin injection is subject to modulation by the PKC cascade in which increased CGRP level in DRG neurons may be related to the initiation of neurogenic inflammation. Thus, up-regulation of TRPV(1) receptors in DRG neurons seems critical for initiating acute neurogenic inflammation.


Assuntos
Inflamação/metabolismo , Neurônios Aferentes/metabolismo , Proteína Quinase C/metabolismo , Canais de Cátion TRPV/biossíntese , Animais , Western Blotting , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/toxicidade , Imunofluorescência , Gânglios Espinais/metabolismo , Expressão Gênica , Imuno-Histoquímica , Inflamação/induzido quimicamente , Masculino , Microscopia Confocal , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fármacos do Sistema Sensorial/toxicidade , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA