RESUMO
Caspases are restricted to animals, while other organisms, including plants, possess metacaspases (MCAs), a more ancient and broader class of structurally related yet biochemically distinct proteases. Our current understanding of plant MCAs is derived from studies in streptophytes, and mostly in Arabidopsis (Arabidopsis thaliana) with 9 MCAs with partially redundant activities. In contrast to streptophytes, most chlorophytes contain only 1 or 2 uncharacterized MCAs, providing an excellent platform for MCA research. Here we investigated CrMCA-II, the single type-II MCA from the model chlorophyte Chlamydomonas (Chlamydomonas reinhardtii). Surprisingly, unlike other studied MCAs and similar to caspases, CrMCA-II dimerizes both in vitro and in vivo. Furthermore, activation of CrMCA-II in vivo correlated with its dimerization. Most of CrMCA-II in the cell was present as a proenzyme (zymogen) attached to the plasma membrane (PM). Deletion of CrMCA-II by genome editing compromised thermotolerance, leading to increased cell death under heat stress. Adding back either wild-type or catalytically dead CrMCA-II restored thermoprotection, suggesting that its proteolytic activity is dispensable for this effect. Finally, we connected the non-proteolytic role of CrMCA-II in thermotolerance to the ability to modulate PM fluidity. Our study reveals an ancient, MCA-dependent thermotolerance mechanism retained by Chlamydomonas and probably lost during the evolution of multicellularity.
Assuntos
Arabidopsis , Clorófitas , Animais , Plantas/metabolismo , Caspases/genética , Caspases/química , Caspases/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismoRESUMO
Selective expansion of high-affinity antigen-specific B cells in germinal centers (GCs) is a key event in antibody affinity maturation. GC B cells with improved affinity can either continue affinity-driven selection or exit the GC to differentiate into plasma cells (PCs) or memory B cells. Here we found that deleting E3 ubiquitin ligases Cbl and Cbl-b (Cbls) in GC B cells resulted in the early exit of high-affinity antigen-specific B cells from the GC reaction and thus impaired clonal expansion. Cbls were highly expressed in GC light zone (LZ) B cells, where they promoted the ubiquitination and degradation of Irf4, a transcription factor facilitating PC fate choice. Strong CD40 and BCR stimulation triggered the Cbl degradation, resulting in increased Irf4 expression and exit from GC affinity selection. Thus, a regulatory cascade that is centered on the Cbl ubiquitin ligases ensures affinity-driven clonal expansion by connecting BCR affinity signals with differentiation programs.
Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Animais , Afinidade de Anticorpos/ética , Afinidade de Anticorpos/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Seleção Clonal Mediada por Antígeno/genética , Seleção Clonal Mediada por Antígeno/imunologia , Expressão Gênica , Técnicas de Inativação de Genes , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Mutação , Ligação Proteica , Proteólise , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , UbiquitinaçãoRESUMO
Dysregulated apoptosis and proliferation are fundamental properties of cancer, and microRNAs (miRNA) are critical regulators of these processes. Loss of miR-15a/16-1 at chromosome 13q14 is the most common genomic aberration in chronic lymphocytic leukemia (CLL). Correspondingly, the deletion of either murine miR-15a/16-1 or miR-15b/16-2 locus in mice is linked to B cell lymphoproliferative malignancies. However, unexpectedly, when both miR-15/16 clusters are eliminated, most double knockout (DKO) mice develop acute myeloid leukemia (AML). Moreover, in patients with CLL, significantly reduced expression of miR-15a, miR-15b, and miR-16 associates with progression of myelodysplastic syndrome to AML, as well as blast crisis in chronic myeloid leukemia. Thus, the miR-15/16 clusters have a biological relevance for myeloid neoplasms. Here, we demonstrate that the myeloproliferative phenotype in DKO mice correlates with an increase of hematopoietic stem and progenitor cells (HSPC) early in life. Using single-cell transcriptomic analyses, we presented the molecular underpinning of increased myeloid output in the HSPC of DKO mice with gene signatures suggestive of dysregulated hematopoiesis, metabolic activities, and cell cycle stages. Functionally, we found that multipotent progenitors (MPP) of DKO mice have increased self-renewing capacities and give rise to significantly more progeny in the granulocytic compartment. Moreover, a unique transcriptomic signature of DKO MPP correlates with poor outcome in patients with AML. Together, these data point to a unique regulatory role for miR-15/16 during the early stages of hematopoiesis and to a potentially useful biomarker for the pathogenesis of myeloid neoplasms.
Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , MicroRNAs , Transtornos Mieloproliferativos , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Divisão Celular , Transtornos Mieloproliferativos/genéticaRESUMO
Flexible cognitive functions, such as working memory (WM), usually require a balance between localized and distributed information processing. However, it is challenging to uncover how local and distributed processing specifically contributes to task-induced activity in a region. Although the recently proposed activity flow mapping approach revealed the relative contribution of distributed processing, few studies have explored the adaptive and plastic changes that underlie cognitive manipulation. In this study, we recruited 51 healthy volunteers (31 females) and investigated how the activity flow and brain activation of the frontoparietal systems was modulated by WM load and training. While the activation of both executive control network (ECN) and dorsal attention network (DAN) increased linearly with memory load at baseline, the relative contribution of distributed processing showed a linear response only in the DAN, which was prominently attributed to within-network activity flow. Importantly, adaptive training selectively induced an increase in the relative contribution of distributed processing in the ECN and also a linear response to memory load, which were predominantly due to between-network activity flow. Furthermore, we demonstrated a causal effect of activity flow prediction through training manipulation on connectivity and activity. In contrast with classic brain activation estimation, our findings suggest that the relative contribution of distributed processing revealed by activity flow prediction provides unique insights into neural processing of frontoparietal systems under the manipulation of cognitive load and training. This study offers a new methodological framework for exploring information integration versus segregation underlying cognitive processing.
Assuntos
Função Executiva , Imageamento por Ressonância Magnética , Memória de Curto Prazo , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Mapeamento Encefálico , Atenção/fisiologia , Cognição/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/fisiologiaRESUMO
BACKGROUND: We recently found that epiplakin 1 (EPPK1) alterations were present in 12% of lung adenocarcinoma (LUAD) cases and were associated with a poor prognosis in early-stage LUAD when combined with other molecular alterations. This study aimed to identify a probable crucial role for EPPK1 in cancer development. METHODS: EPPK1 mRNA and protein expression was analyzed with clinical variables. Normal bronchial epithelial cell lines were exposed to cigarette smoke for 16 weeks to determine whether EPPK1 protein expression was altered after exposure. Further, we used CRISPR-Cas9 to knock out (KO) EPPK1 in LUAD cell lines and observed how the cancer cells were altered functionally and genetically. RESULTS: EPPK1 protein expression was associated with smoking and poor prognosis in early-stage LUAD. Moreover, a consequential mesenchymal-to-epithelial transition was observed, subsequently resulting in diminished cell proliferation and invasion after EPPK1 KO. RNA sequencing revealed that EPPK1 KO induced downregulation of 11 oncogenes, 75 anti-apoptosis, and 22 angiogenesis genes while upregulating 8 tumor suppressors and 12 anti-cell growth genes. We also observed the downregulation of MYC and upregulation of p53 expression at both protein and RNA levels following EPPK1 KO. Gene ontology enrichment analysis of molecular functions highlighted the correlation of EPPK1 with the regulation of mesenchymal cell proliferation, mesenchymal differentiation, angiogenesis, and cell growth after EPPK1 KO. CONCLUSIONS: Our data suggest that EPPK1 is linked to smoking, epithelial to mesenchymal transition, and the regulation of cancer progression, indicating its potential as a therapeutic target for LUAD.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal/genética , Prognóstico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular TumoralRESUMO
A facile and efficient approach for the synthesis of multisubstituted tetrahydropyridazines starting from cyclopropyl ketones and hydrazines has been developed. The transformation is chalcone-based and takes place via a Cloke-Wilson-type rearrangement-involved tandem reaction catalyzed by TfOH in HFIP.
RESUMO
Excessive noise exposure presents significant health risks to humans, affecting not just the auditory system but also the cardiovascular and central nervous systems. This study focused on three male macaque monkeys as subjects. 90â¯dB sound pressure level (SPL) pure tone exposure (frequency: 500Hz, repetition rate: 40Hz, 1â¯min per day, continuously exposed for 5 days) was administered. Assessments were performed before exposure, during exposure, immediately after exposure, and at 7-, 14-, and 28-days post-exposure, employing auditory brainstem response (ABR) tests, electrocardiograms (ECG), and electroencephalograms (EEG). The study found that the average threshold for the â ¤ wave in the right ear increased by around 30â¯dB SPL right after exposure (Pâ¯<â¯0.01) compared to pre-exposure. This elevation returned to normal within 7 days. The ECG results indicated that one of the macaque monkeys exhibited an RS-type QRS wave, and inverted T waves from immediately after exposure to 14 days, which normalized at 28 days. The other two monkeys showed no significant changes in their ECG parameters. Changes in EEG parameters demonstrated that main brain regions exhibited significant activation at 40Hz during noise exposure. After noise exposure, the power spectral density (PSD) in main brain regions, particularly those represented by the temporal lobe, exhibited a decreasing trend across all frequency bands, with no clear recovery over time. In summary, exposure to 90â¯dB SPL noise results in impaired auditory systems, aberrant brain functionality, and abnormal electrocardiographic indicators, albeit with individual variations. It has implications for establishing noise protection standards, although the precise mechanisms require further exploration by integrating pathological and behavioral indicators.
Assuntos
Eletrocardiografia , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico , Ruído , Animais , Masculino , Ruído/efeitos adversos , Macaca/fisiologiaRESUMO
With the development and widespread application of electromagnetic technology, the health hazards of electromagnetic radiation have attracted much attention and concern. The effect of electromagnetic radiation on the nervous system, especially on learning, memory, and cognitive functions, is an important research topic in the field of electromagnetic biological effects. Most previous studies were conducted with rodents, which are relatively mature. As research has progressed, studies using non-human primates as experimental subjects have been carried out. Compared to rodents, non-human primates such as macaques not only have brain structures more similar to those of humans but also exhibit learning and memory processes that are similar. In this paper, we present a behavioral test system for the real-time evaluation of the working memory (WM) of macaques in a microwave environment. The system consists of two parts: hardware and software. The hardware consists of four modules: the operation terminal, the control terminal, the optical signal transmission, and detection module and the reward feedback module. The software program can implement the feeding learning task, the button-pressing learning task, and the delayed match-to-sample task. The device is useful for the real-time evaluation of the WM of macaques in microwave environments, showing good electromagnetic compatibility, a simple and reliable structure, and easy operation.
RESUMO
Antibody affinity maturation occurs in the germinal center (GC), a highly dynamic structure that arises upon antigen stimulation and recedes after infection is resolved. While the magnitude of the GC reaction is highly fluctuating and depends on antigens or pathological conditions, it is unclear whether GCs are assembled ad hoc in different locations or in preexisting niches within B cell follicles. We show that follicular dendritic cells (FDCs), the essential cellular components of the GC architecture, form a predetermined number of clusters. The total number of FDC clusters is the same on several different genetic backgrounds and is not altered by immunization or inflammatory conditions. In unimmunized and germ-free mice, a few FDC clusters contain GC B cells; in contrast, immunization or autoimmune milieu significantly increases the frequency of FDC clusters occupied by GC B cells. Excessive occupancy of GC niches by GC B cells after repeated immunizations or in autoimmune conditions suppresses subsequent antibody responses to new antigens. These data indicate that the magnitude of the GC reaction is restricted by a fixed number of permissive GC niches containing preassembled FDC clusters. This finding may help in the future design of vaccination strategies and in the modulation of antibody-mediated autoimmunity.
Assuntos
Formação de Anticorpos , Antígenos/imunologia , Linfócitos B/imunologia , Diferenciação Celular , Células Dendríticas Foliculares/imunologia , Centro Germinativo/imunologia , Animais , Afinidade de Anticorpos , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
A molecular editing reaction for converting pyrrole rings into benzene rings through a sequential pathway of Diels-Alder and cheletropic reactions was developed. The nitrogen atom in a N-bridged intermediate is eliminated in the form of N2O by a strain-releasing pathway, ultimately leading to the formation of substituted benzene and naphthalene derivatives.
RESUMO
Emerging evidence indicates that activity flow over resting-state network topology allows the prediction of task activations. However, previous studies have mainly adopted static, linear functional connectivity (FC) estimates as activity flow routes. It is unclear whether an intrinsic network topology that captures the dynamic nature of FC can be a better representation of activity flow routes. Moreover, the effects of between- versus within-network connections and tight versus loose (using rest baseline) task contrasts on the prediction of task-evoked activity across brain systems remain largely unknown. In this study, we first propose a probabilistic FC estimation derived from a dynamic framework as a new activity flow route. Subsequently, activity flow mapping was tested using between- and within-network connections separately for each region as well as using a set of tight task contrasts. Our results showed that probabilistic FC routes substantially improved individual-level activity flow prediction. Although it provided better group-level prediction, the multiple regression approach was more dependent on the length of data points at the individual-level prediction. Regardless of FC type, we consistently observed that between-network connections showed a relatively higher prediction performance in higher-order cognitive control than in primary sensorimotor systems. Furthermore, cognitive control systems exhibit a remarkable increase in prediction accuracy with tight task contrasts and a decrease in sensorimotor systems. This work demonstrates that probabilistic FC estimates are promising routes for activity flow mapping and also uncovers divergent influences of connectional topology and task contrasts on activity flow prediction across brain systems with different functional hierarchies.
Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Descanso/fisiologiaRESUMO
BACKGROUND: Evidence shows that microwaves radiation may have various biological effects on central nervous system. Role of electromagnetic fields in neurodegenerative diseases, especially AD, has been widely studied, but results of these studies are inconsistent. Therefore, the above effects were verified again and the mechanism was preliminarily discussed. METHODS: Amyloid precursor protein (APP/PS1) and WT mice were exposed to long-term microwave radiation for 270 days (900 MHz, SAR: 0.25-1.055 W/kg, 2 h/day, alternately), and related indices were assessed at 90, 180 and 270 days. Cognition was evaluated by Morris water maze, Y maze and new object recognition tests. Congo red staining, immunohistochemistry and ELISA were used to analyze Aß plaques, Aß40 and Aß42 content. Differentially expressed proteins in hippocampus between microwave-exposed and unexposed AD mice were identified by proteomics. RESULTS: Spatial and working memory was improved in AD mice after long-term 900 MHz microwave exposure compared with after sham exposure. Microwave radiation (900 MHz) for 180 or 270 days did not induce Aß plaque formation in WT mice but inhibited Aß accumulation in the cerebral cortex and hippocampus in 2- and 5-month-old APP/PS1 mice. This effect mainly occurred in the late stage of the disease and may have been attributed to downregulation of apolipoprotein family member and SNCA expression and excitatory/inhibitory neurotransmitter rebalance in the hippocampus. CONCLUSIONS: The present results indicated that long-term microwave radiation can retard AD development and exert a beneficial effect against AD, suggesting that 900 MHz microwave exposure may be a potential therapy for AD.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Campos Eletromagnéticos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças , Presenilina-1/genética , Presenilina-1/metabolismoRESUMO
Thiacloprid (THIA) is a kind of neonicotinoid, a widely used insecticide class. Animal studies of adult and prenatal exposure to THIA have revealed deleterious effects on mammalian sperm fertility and embryonic development. A recent cross-sectional study linked higher THIA concentrations to delayed genitalia development stages in adolescent boys, suggesting that pubertal exposure to THIA may adversely affect reproductive development in immature males. Hence, this study aimed to investigate the effects of daily oral administration of THIA during puberty on the reproductive system of developing male mice. Young male C57 BL/6 J mice aged 21 days were administrated with THIA at concentrations of 10 (THIA-10), 50 (THIA-50) and 100 mg/kg (THIA-100) for 4 weeks by oral gavage. It is found that exposure to 100 mg/kg THIA diminished sexual behavior in immature male mice, caused a decrease in the spermatogenic cell layers and irregular arrangement of the seminiferous epithelium, and down-regulated the mRNA levels of spermatogenesis-related genes Ddx4, Scp3, Atg5, Crem, and Ki67, leading to an increase of sperm abnormality rate. In addition, THIA exposure at 50 and 100 mg/kg reduced the serum levels of testosterone and FSH, and decreased the expression levels of Star and Cyp11a1 related to testosterone biosynthesis. THIA exposure at 10 mg/kg did not produce any of the above significant changes. In conclusion, the high dose of THIA exposure impaired reproductive function in immature mice. It seems that THIA has no detrimental effects on the reproductive system of mice at low dose of 10 mg/kg.
Assuntos
Efeitos Tardios da Exposição Pré-Natal , Testículo , Gravidez , Feminino , Camundongos , Masculino , Animais , Humanos , Sêmen , Espermatogênese , Testosterona , Neonicotinoides/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , MamíferosRESUMO
Sirtuin3 (SIRT3), a class III histone deacetylase, is implicated in various cardiovascular diseases as a novel therapeutic target. SIRT3 has been proven to be cardioprotective in a model of Ang II-induced cardiac hypertrophy. However, a few small-molecule compounds targeting deacetylases could activate SIRT3. In this study, we generated a novel SIRT3 activator, 3-(2-bromo-4-hydroxyphenyl)-7-hydroxy-2H-chromen-2-one (SZC-6), through structural optimization of the first SIRT3 agonist C12. We demonstrated that SZC-6 directly bound to SIRT3 with Kd value of 15 µM, and increased SIRT3 deacetylation activity with EC50 value of 23.2 ± 3.3 µM. In neonatal rat cardiomyocytes (NRCMs), pretreatment with SZC-6 (10, 20, 40 µM) dose-dependently attenuated isoproterenol (ISO)-induced hypertrophic responses. Administration of SZC-6 (20, 40 and 60 mg·kg-1·d-1, s.c.) for 2 weeks starting from one week prior ISO treatment dose-dependently reversed ISO-induced impairment of diastolic and systolic cardiac function in wild-type mice, but not in SIRT3 knockdown mice. We showed that SZC-6 (10, 20, 40 µM) dose-dependently inhibited cardiac fibroblast proliferation and differentiation into myofibroblasts, which was abolished in SIRT3-knockdown mice. We further revealed that activation of SIRT3 by SZC-6 increased ATP production and rate of mitochondrial oxygen consumption, and reduced ROS, improving mitochondrial function in ISO-treated NRCMs. We also found that SZC-6 dose-dependently enhanced LKB1 phosphorylation, thereby promoting AMPK activation to inhibit Drp1-dependent mitochondrial fragmentation. Taken together, these results demonstrate that SZC-6 is a novel SIRT3 agonist with potential value in the treatment of cardiac hypertrophy partly through activation of the LKB1-AMPK pathway.
Assuntos
Sirtuína 3 , Camundongos , Ratos , Animais , Sirtuína 3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/induzido quimicamente , Miócitos Cardíacos/metabolismo , IsoproterenolRESUMO
Chronic heart failure (CHF), a conventional, complex, and severe syndrome, is generally defined by myocardial output inadequate to satisfy the metabolic requirements of body tissues. Recently, miR-568 was identified to be down-regulated in CHF patients' sera and negatively correlated with left ventricular mass index in symptomatic CHF patients with systolic dysfunction. Nevertheless, the role of miR-568 during CHF development remains obscure. The current study is aimed to investigate the role of miR-568 in CHF. The MTT assay, flow cytometry analysis, RT-qPCR analysis, western blot analysis and luciferase reporter assays were conducted to figure out the function and potential mechanism of miR-568 in vitro. Rats were operated with aortic coarctation to establish CHF animal model. The effects of miR-568 and SMURF2 on CHF rats were evaluated by hematoxylin-eosin staining, Masson's staining, serum index testing, cardiac ultrasound detection, and TUNEL staining assays. We discovered that miR-568 level was downregulated by H2O2 treatment in cardiomyocytes. In mechanism, miR-568 directly targeted and negatively regulated SMURF2. In function, SMURF2 overexpression reversed the effects of miR-568 on cardiac function and histological changes in vivo. Additionally, SMURF2 overexpression reversed the effects of miR-568 on the content of LDH, AST, CK and CK-MB in vivo. Moreover, SMURF2 overexpression reversed the effects of miR-568 on oxidative stress response in vivo. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in CHF rats. This discovery may serve as a potential biomarker for CHF treatment.
Assuntos
Insuficiência Cardíaca , MicroRNAs , Ratos , Animais , Miócitos Cardíacos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Insuficiência Cardíaca/metabolismo , Apoptose , Estresse Oxidativo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologiaRESUMO
Coronavirus disease 2019 (COVID-19) has become a significant global public health problem. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which causes the disease, utilizes angiotensin-converting enzyme II (ACE2) as a major functional receptor to enter host cells. No study has systematically assessed ACE2 expression in multiple tissues in children. This study investigated ACE2 expression and ACE2 protein's histological distribution in various organs in paediatric patients (the small intestine, thymus, heart and lungs). Our study revealed that ACE2 was highly expressed in enterocytes of the small intestine and widely expressed in the myocardium of heart tissues. The most notable finding was the positive staining of ACE2 in the Hassall's corpuscles epithelial cells. Negligible ACE2 expression in the lung tissues may contribute to a lower risk of infection and fewer symptoms of pneumonia in children than in adults with COVID-19 infection. These findings provide initial evidence for understanding SARS-CoV-2 pathogenesis and prevention strategies in paediatric clinical practice, which should be applicable for all children worldwide.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Criança , Enzima de Conversão de Angiotensina 2/genética , Coração , Saúde PúblicaRESUMO
As the number and length of high-speed railway tunnels increase in China, implicit defects such as insufficient lining thicknesses, voids, and poor compaction have become increasingly common, posing a serious threat to train operation safety. It is, therefore, imperative to conduct a comprehensive census of the defects within the tunnel linings. In response to this problem, this study proposes a high-speed railway tunnel detection method based on vehicle-mounted air-coupled GPR. Building on a forward simulation of air-coupled GPR, the study proposes the F-K filtering and BP migration algorithms based on the practical considerations of random noise and imaging interference from the inherent equipment. Through multi-dimensional quantitative comparisons, these algorithms are shown to improve the spectrum entropy values and instantaneous amplitude ratios by 4.6% and 11.6%; and 120% and 180%, respectively, over the mean and bandpass filtering algorithms, demonstrating their ability to suppress clutter and enhance the internal signal prominence of the lining. The experimental results are consistent with the forward simulation trends, and the verification using the ground-coupled GPR detection confirms that air-coupled GPR can meet the requirements of high-speed railway tunnel lining inspections. A comprehensive GPR detection model is proposed to lay the foundation for a subsequent defect census of high-speed railway tunnels.
RESUMO
Alzheimer's disease (AD) is the most frequent cause of cognitive impairment in middle-aged and older populations. There is a lack of drugs that demonstrate significant efficacy in AD, so the study of the pathogenesis of AD is of great importance. More efficacious interventions are needed, as reflected by our population's fast aging. Synaptic plasticity is the capacity of neurons to adjust their connections, and it is strongly tied to learning and memory, cognitive function, and brain injury recovery. Changes in synaptic strength, such as long-term potentiation (LTP) or inhibition (LTD), are thought to represent the biological foundation of the early stages of learning and memory. The results of numerous studies confirm that neurotransmitters and their receptors play an important role in the regulation of synaptic plasticity. However, so far, there is no definite correlation between the function of neurotransmitters in aberrant neural oscillation and AD-related cognitive impairment. We summarized the AD process to understand the impact of neurotransmitters in the progression and pathogenesis of AD, including the current status of neurotransmitter target drugs, and the latest evidence of neurotransmitters' function and changes in the AD process.
Assuntos
Doença de Alzheimer , Pessoa de Meia-Idade , Humanos , Idoso , Animais , Doença de Alzheimer/patologia , Plasticidade Neuronal , Potenciação de Longa Duração , Aprendizagem , Neurotransmissores/farmacologia , Modelos Animais de Doenças , HipocampoRESUMO
With the increasing pervasiveness of mobile devices such as smartphones, smart TVs, and wearables, smart sensing, transforming the physical world into digital information based on various sensing medias, has drawn researchers' great attention. Among different sensing medias, WiFi and acoustic signals stand out due to their ubiquity and zero hardware cost. Based on different basic principles, researchers have proposed different technologies for sensing applications with WiFi and acoustic signals covering human activity recognition, motion tracking, indoor localization, health monitoring, and the like. To enable readers to get a comprehensive understanding of ubiquitous wireless sensing, we conduct a survey of existing work to introduce their underlying principles, proposed technologies, and practical applications. Besides we also discuss some open issues of this research area. Our survey reals that as a promising research direction, WiFi and acoustic sensing technologies can bring about fancy applications, but still have limitations in hardware restriction, robustness, and applicability. Supplementary Information: The online version contains supplementary material available at 10.1007/s11390-023-3073-5.