Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genomics ; : 110897, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032617

RESUMO

Vaccinium L. is an important fruit tree with nutritional, medicinal, and ornamental values. However, the mitochondrial (mt) genome of Vaccinium L. remains largely unexplored. Vaccinium carlesii Dunn is an endemic wild resource in China, which is crucial for blueberry breeding. The V. carlesii mt genomes were sequenced using Illumina and Nanopore, which total length was 636,904 bp with 37 protein coding genes, 20 tRNA genes, and three rRNA genes. We found four pairs of long repeat fragments homologous recombination mediated the generation of substructures in the V. carlesii mt genome. We predicted 383 RNA editing sites, all converting cytosine (C) to uracil (U). According to the phylogenetic analysis, V. carlesii and V. macrocarpon of the Ericaceae exhibited the closest genetic relationship. This study provides a theoretical basis for understanding the evolution of higher plants, species classification and identification, and will also be useful for further utilization of Vaccinium germplasm resources.

2.
Small ; 19(18): e2206067, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36720012

RESUMO

It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc-air batteries (ZABs). Herein, a CoFe-S@3D-S-NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf-like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe-MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core-shell structure, and S, N-doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm-2 ), superior specific capacity (815 mA h gZn -1 ), and excellent stability at 5 mA cm-2 for ≈900 h. The quasi-solid-state ZABs also exhibit a very high peak power density of 490 mW cm-2 and an excellent voltage round-trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs.

3.
Anal Chem ; 94(43): 14947-14955, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269062

RESUMO

Proximity-localized catalytic hairpin assembly (plCHA) is intriguing for rapid and sensitive assay of an HIV-specific DNA segment (T*). Using template-integrated green Ag nanoclusters (igAgNCs) as emitters, herein, we report the first design of a T*-activated plCHA circuit that is confined in a three-way-junction architecture (3WJA) for the fluorescence sensing of T*. To this end, the T*-recognizable complement is programmed in a stem-loop hairpin (H1), and two split template sequences of igAgNCs are separately overhung contiguous to the paired stems of H1 and another hairpin (H2). The hybridization among H1, H2, and two single-stranded linkers (L1 and L2) allows the stable construction of 3WJA. Upon presenting the input T*, the 3WJA-localized plCHA is operated through toehold-mediated strand displacements of H1 and H2 reactants, and T* is rationally displaced and repeatably recycled, analogous to a specific catalyst, inducing more hairpin assembly events. Resultantly, the hybridized products enable the collective combination of two splits in the parent scaffold for hosting igAgNCs, outputting T*-dependent fluorescence response. Because of 3WJA structural confinement, the spatial proximity of two reactive hairpins yielded high local concentrations to manipulate the plCHA operation, achieving rapider reaction kinetics via T*-catalyzed recycling than typical catalytic hairpin assembly (CHA). This simple assay strategy would open the arena to develop various plCHA-based circuits capable of modulating the fluorescence emission of igAgNCs for applicable biosensing and bioanalysis.


Assuntos
Técnicas Biossensoriais , DNA/química , Hibridização de Ácido Nucleico , Catálise , Espectrometria de Fluorescência , Limite de Detecção
4.
Anal Chem ; 94(47): 16427-16435, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36377707

RESUMO

Exploring the replication of hybridization chain reaction HCR (rHCR) for reciprocal amplification is intriguing in biosensing and bioanalysis. Herein, we develop a rHCR-based fluorescence platform that is manipulated by the combination of a specific DNA trigger (T) and a T-analogous amplicon (T*), thereby concatenating multi green-emissive Ag nanoclusters (mgAgNCs) for amplifiable signal readout. Four well-designed hairpins (H1 recognizing T, H2, H3, and H4) with sequential complements are executed to operate rHCR. The termini of H1/H3 are merged to hybridize an inhibiting strand (I). The parent scaffold for mgAgNCs is separated into two splits (C4AC4T and C3GT4) that are individually overhung in H2/H4. The presence of T activates the first HCR amplifier through cross-hybridization of four reactive hairpins for forming HCR duplexes. The next invasion of a complex (T*·I) drives I to hybridize the tandem repeats in H1/H3, so that the displaced T* functions as T to catalyze the second amplifier rHCR for feeding back more hairpin assemblies with rapid reaction kinetics. In the shared rHCR polymers, the parent scaffolds (C4AC4TC3GT4) in H2/H4 are collectively concatenated for the preferential clustering of mgAgNCs adducts, which cooperatively emit enormous T-responsive fluorescence signal. Because of the localization of T in HCR products, an alternative amplicon T* is introduced to drive rHCR progress via DNA strand displacement, generating more nucleating sites of emitters. Thus, the rational combination of nonenzymatic rHCR and label-free fluorescent concatemers would create a reciprocal signal amplification, achieving a simplified, rapid, and highly sensitive assay down to femtomolar concentrations.


Assuntos
Técnicas Biossensoriais , Hibridização de Ácido Nucleico , DNA/genética , DNA/análise , Espectrometria de Fluorescência , Limite de Detecção
5.
Anal Chem ; 94(22): 8041-8049, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35617342

RESUMO

It is intriguing to modulate the fluorescence emission of DNA-scaffolded silver nanoclusters (AgNCs) via confined strand displacement and transient concatenate ligation for amplifiable biosensing of a DNA segment related to SARS-CoV-2 (s2DNA). Herein, three stem-loop structural hairpins for signaling, recognizing, and assisting are designed to assemble a variant three-way DNA device (3WDD) with the aid of two linkers, in which orange-emitting AgNC (oAgNC) is stably clustered and populated in the closed loop of a hairpin reporter. The presence of s2DNA initiates the toehold-mediated strand displacement that is confined in this 3WDD for repeatable recycling amplification, outputting numerous hybrid DNA-duplex conformers that are implemented for a transient "head-tail-head" tandem ligation one by one. As a result, the oAgNC-hosted hairpin loops are quickly opened in loose coil motifs, bringing a significant fluorescence decay of multiple clusters dependent on s2DNA. Demonstrations and understanding of the tunable spectral performance of a hairpin loop-wrapped AgNC via switching 3WDD conformation would be highly beneficial to open a new avenue for applicable biosensing, bioanalysis, or clinical diagnostics.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , DNA/química , DNA/genética , Humanos , Nanopartículas Metálicas/química , SARS-CoV-2 , Prata/química , Espectrometria de Fluorescência
6.
Anal Chem ; 93(33): 11634-11640, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34378382

RESUMO

Exploring the ratiometric fluorescence biosensing of DNA-templated biemissive silver nanoclusters (AgNCs) is significant in bioanalysis, yet the design of a stimuli-responsive DNA device is a challenge. Herein, using the anti-digoxin antibody (anti-Dig) with two identical binding sites as a model, a tweezer-like DNA architecture is assembled to populate fluorescent green- and red-AgNCs (g-AgNCs and r-AgNCs), aiming to produce a ratio signal via specific recognition of anti-Dig with two haptens (DigH). To this end, four DNA probes are programmed, including a reporter strand (RS) dually ended with a g-/r-AgNC template sequence, an enhancer strand (ES) tethering two same G-rich tails (G18), a capture strand (CS) labeled with DigH at two ends, and a help strand (HS). Initially, both g-AgNCs and r-AgNCs wrapped in the intact RS are nonfluorescent, whereas the base pairing between RS, ES, CS, and HS resulted in the construction of DNA mechanical tweezers with two symmetric arms hinged by a rigid "fulcrum", in which g-AgNCs are lighted up due to G18 proximity ("green-on"), and r-AgNCs away from G18 are still dark ("red-off"). When two DigHs in proximity recognize and bind anti-Dig, the conformation switch of these tweezers resultantly occurs, taking g-AgNCs away from G18 for "green-off" and bringing r-AgNCs close to G18 for "red-on". As such, the ratiometric fluorescence of r-AgNCs versus g-AgNCs is generated in response to anti-Dig, achieving reliable quantization with a limit of detection at the picomolar level. Based on the fast stimulated switch of unique DNA tweezers, our ratiometric strategy of dual-emitting AgNCs would provide a new avenue for a variety of bioassays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Anticorpos , DNA , Fluorescência , Prata , Espectrometria de Fluorescência
7.
Cancer Sci ; 110(4): 1194-1207, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30690837

RESUMO

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in both men and women in the USA. However, the underlying molecular mechanisms that drive CRC tumorigenesis are still not clear. Several studies have reported that long noncoding RNAs (lncRNAs) have important roles in tumor development. Here, we undertook a transcriptome microarray analysis in 6 pairs of CRC tissues and their corresponding adjacent normal tissues. A total of 1705 differentially expressed lncRNAs were detected in CRC tissues at stages I/II and III/IV (fold change greater than or equal to 2 or less than or equal to 0.5). Among them, we found that the lncRNA lung cancer-associated transcript 1 (LUCAT1) was upregulated in CRC tissues and was closely associated with poor overall survival of CRC patients, through analysis of clinical data and The Cancer Genome Atlas. Functional studies indicated that LUCAT1 promoted CRC cell proliferation, apoptosis, migration, and invasion in vitro and in vivo. Furthermore, knockdown of LUCAT1 rendered CRC cells hypersensitive to oxaliplatin treatment. Mechanistically, bioinformatic analysis indicated that low expression of LUCAT1 was associated with the p53 signaling pathway. Chromatin isolation by RNA purification followed by mass spectrometry and RNA immunoprecipitation revealed that LUCAT1 bound with UBA52, which encodes ubiquitin and 60S ribosomal protein L40 (RPL40). We found that RPL40 functions in the ribosomal protein-MDM2-p53 pathway to regulate p53 expression. Taken together, our findings indicate that suppression of LUCAT1 induces CRC cell cycle arrest and apoptosis by binding UBA52 and activating the RPL40-MDM2-p53 pathway. These results implicate LUCAT1 as a potential prognostic biomarker and therapeutic target for CRC.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Longo não Codificante/genética , Proteínas Ribossômicas/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Prognóstico , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Carga Tumoral , Proteína Supressora de Tumor p53/metabolismo
8.
Sci Total Environ ; 825: 154080, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218835

RESUMO

The reactive iodine species may exhibit significant impacts on many global atmospheric issues and the I•/I2•- radicals play key roles for inducing the formation of these reactive iodine species. However, the current understanding on the formation of I•/I2•- radicals in atmospheric aqueous aerosol is still quite limited. The results reported herein suggest that I•/I2•- can be produced simultaneously in aqueous aerosol by several sunlight-driven photochemical pathways including direct photo-dissociation of soluble organic iodine (SOI) at rates of 0.10-1.34 × 10-9 M ns-1 and 0.99-5.68 × 10-7 M µs-1, •OH-mediated oxidation of I- at 0.03-1.41 × 10-8 M ns-1 and 0.05-4.10 × 10-6 M µs-1, and 3DOM⁎-induced oxidation of I- at 1.57-1.65 × 10-9 M ns-1 and 0.99-5.68 × 10-7 M µs-1 for generation of I• and I2•-, respectively. Meanwhile, the pathway of eaq--initiated stepwise reduction of IO3- to I2(aq) and further photolyzed into I• plays negligible role in formation of I•/I2•- due to the low reaction rates and severe quenching effect of eaq- by dissolved O2. Our work presented the new data on mechanism and kinetics for comprehensive elucidation of I•/I2•- formation in coastal atmospheric aqueous aerosol and would help to better understand the transformation mechanism of iodine species, pathways of iodine cycling and the associated environmental impacts involving atmospheric reactive iodine radicals.


Assuntos
Iodetos , Iodo , Aerossóis , Oxirredução , Água
9.
Sci Rep ; 12(1): 3444, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236887

RESUMO

Tumour immune regulation has attracted widespread attention, and long noncoding RNAs (lncRNAs) play an important role in this process. Therefore, we evaluated patient prognosis by exploring the relationship between bladder cancer (BLCA) and immune-related lncRNAs (IRlncRNAs). Transcriptome data and immune-related genes were analysed for coexpression, and then, the IRlncRNAs were analysed to determine the differentially expressed IRlncRNAs (DEIRlncRNAs) between normal and tumour samples in The Cancer Genome Atlas. The screened lncRNAs were pairwise paired and combined with clinical data, and finally, a signature was constructed by Lasso regression and Cox regression in 13 pairs of DEIRlncRNAs. According to the Akaike information criterion (AIC) values of the 1-year receiver operating characteristic curve, BLCA patients were stratified into high- or low-risk groups. The high-risk group had a worse prognosis. A comprehensive analysis showed that differences in risk scores were associated with the immune status of BLCA-infiltrated patients. The identified signature was correlated with the expression of immune checkpoint inhibitor-related molecules and sensitivity to chemotherapeutic drugs. We also identified three BLCA clusters with different immune statuses and prognoses that are also associated with immunotherapy response and drug sensitivity. In conclusion, we constructed a powerful predictive signature with high accuracy and validated its prognostic value.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Neoplasias da Bexiga Urinária/genética
10.
Oncogene ; 41(7): 930-942, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34615998

RESUMO

Colorectal cancer (CRC) is among the top five most common malignant tumors worldwide and has a high mortality rate. Identification of the mechanism of CRC and potential therapeutic targets is critical for improving survival. In the present study, we observed high expression of RAN binding protein 1 (RANBP1) in CRC tissues. Upregulated RANBP1 expression was strongly associated with TNM stages and was an independent risk factor for poor prognosis. In vitro and in vivo functional experiments demonstrated that RANBP1 promoted the proliferation and invasion of CRC cells and inhibited the apoptosis of CRC cells. Low RANBP1 expression reduced the expression levels of hsa-miR-18a, hsa-miR-183, and hsa-miR-106 microRNAs (miRNAs) by inhibiting the nucleoplasmic transport of precursor miRNAs (pre-miRNAs), thereby promoting the accumulation of the latter in the nucleus and reducing the expression of mature miRNAs. Further experiments and bioinformatic analyses demonstrated that RANBP1 promoted the expression of YAP by regulating miRNAs and the Hippo pathway. We also found that YAP acted as a transcriptional cofactor to activate RANBP1 transcription in combination with TEAD4 transcription factor. Thus, RANBP1 further promoted the progression of CRC by forming a positive feedback loop with YAP. Our results revealed the biological role and mechanism of RANBP1 in CRC for the first time, suggesting that RANBP1 can be used as a diagnostic molecule and a potential therapeutic target in CRC.


Assuntos
MicroRNAs
11.
Biosens Bioelectron ; 199: 113871, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915217

RESUMO

To explore the fluorescence bio-responsiveness of emissive silver nanoclusters (AgNCs) populated in DNA-branched scaffolds is intriguing yet challenging. In response to a desired targeting model (T*) as a vehicle, herein a customized three-way-junction DNA construct (TWJDC) is assembled via competitive hybridizing cascade among three stem-loop hairpins with specific base sequences, where the repeated recycling of T* enables the exponentially amplifiable output of rigid TWJDC. As designed, these stable hybridization products are highly T*-stimulated responsive and constructing-directional. In the three branched-arms, the unpaired sticky ends provide isotropic binding sites for a signaling hairpin encoded with two C-rich templates of green- and red-AgNCs clustering. The identical ligation of signal probe with three arms of TWJDC liberates its locked stem, enabling the separate growth of red-clusters in three branches. As demonstrated, three clusters of red-AgNCs possess advantageous self-enhancing fluorescent performance relative to single or two cluster(s), good biocompatibility and low cytotoxicity. Utilizing the bicolor AgNCs as dual-emitters with reversely changed emission intensity, we developed an innovative ratiometric strategy displaying sensitively linear dose-dependence on variable T* down to 1.9 pM, which can afford a promising platform for biosensing, bioanalysis, cell imaging, or even clinical theranostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , DNA , Fluorescência , Prata , Espectrometria de Fluorescência
12.
Front Oncol ; 10: 274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219064

RESUMO

Colorectal cancer (CRC), a common tumor, is characterized by a high mortality rate. Long non-coding RNA maternally expressed gene 3 (MEG3) serves a regulatory role in the carcinogenesis and progression of several types of cancer; however, its role in CRC remains largely unknown. The aim of this study was to explore the regulatory role and mechanism(s) of MEG3 in CRC. The Warburg effect or aerobic glycolysis is characteristic of the metabolism of tumor cells. To determine the effect of MEG3 on glycolysis of CRC cells, we used an XF analyzer to perform glycolysis stress test assays and found that overexpression of MEG3 significantly inhibited glycolysis, glycolytic capacity, as well as lactate production in CRC cells, whereas knockdown of MEG3 produced the opposite effect. Mechanistically, overexpression of MEG3 induced ubiquitin-dependent degradation of c-Myc and inhibited c-Myc target genes involved in the glycolysis pathway such as lactate dehydrogenase A, pyruvate kinase muscle 2, and hexokinase 2. Moreover, we found that MEG3 can be activated by vitamin D and vitamin D receptor (VDR). Clinical data demonstrated that MEG3 was positively associated with serum vitamin D concentrations in patients with CRC. We found that 1,25(OH)2D3 treatment increased MEG3 expression, and knockdown of VDR abolished the effect of MEG3 on glycolysis. These results indicate that vitamin D-activated MEG3 suppresses aerobic glycolysis in CRC cells via degradation of c-Myc. Thus, vitamin D may have therapeutic value in the treatment of CRC.

13.
Int J Biol Sci ; 16(12): 2131-2144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549760

RESUMO

The powerful pro-angiogenic capacity of human amnion-derived mesenchymal stem cells (hAMSCs) could be a valuable therapeutic angiogenesis strategy for bone regeneration. However, the molecular mechanisms underlying this process remain largely unknown. Herein, we report upregulated expression of circular RNA 100290 (circ-100290) and an enhanced angiogenic phenotype of human umbilical vein endothelial cells (HUVECs) incubated with conditioned medium from hAMSCs (hAMSC-CM), whereas downregulation of circ-100290 reversed the pro-angiogenic capacity of HUVECs induced by hAMSC-CM. Circ-100290/microRNA 449a (miR-449a)/endothelial nitric oxide synthase (eNOS) and circ-100290/miR-449a/vascular endothelial growth factor A (VEGFA) axes were predicted by a bioinformatics method and subsequently verified by luciferase reporter assays in vitro. Gain- or loss-of-function assays were then performed using small interfering RNAs (siRNAs) targeting circ-100290, or a plasmid overexpressing circ-100290. As expected, downregulation of circ-100290 in HUVECs led to weakened tube formation and migration of HUVECs following hAMSC-CM treatment, along with decreased expression of eNOS and VEGFA. In contrast, upregulation of circ-100290 led to enhanced tube formation and migration of HUVECs following hAMSC-CM treatment, along with increased expression of eNOS and VEGFA. Furthermore, a miR-449a inhibitor could largely rescue the effect of circ-100290 silencing on HUVECs, whereas a miR-449a mimic could significantly rescue the effect of overexpressing circ-100290 on HUVECs. Functional assays using eNOS or VEGF receptor inhibitors indicated eNOS and VEGFA may be important targets of miR-449a. Finally, a Matrigel plug assay revealed weakened angiogenesis when circ-100290 was silenced in HUVECs, but enhanced angiogenesis when circ-100290 was overexpressed in vivo. Our results suggest that circ-100290 might function via miR-449a/eNOS and miR-449a/VEGFA axes in the pro-angiogenic role of hAMSC-CM on HUVECs.


Assuntos
Âmnio/citologia , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Circular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Regulação para Baixo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/genética , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase Tipo III/genética , RNA Circular/genética , Fator A de Crescimento do Endotélio Vascular/genética
14.
Biomed Res Int ; 2019: 1427871, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937307

RESUMO

Butyrate is a short-chain fatty acid decomposed from dietary fiber and has been shown to have effects on inhibition of proliferation but induction of apoptosis in colorectal cancer cells. However, clinical trials have yielded ambiguous outcomes with regard to its antitumor activities. In this study, we aimed to explore the molecular mechanisms underlying the sensitivity of colorectal cancer cells to sodium butyrate (NaB). RNA sequencing was used to establish the whole-transcriptome profile in NaB-treated versus untreated colorectal cancer cells. Differentially expressed genes were bioinformatically analyzed to predict their possible involvement in NaB-triggered cell death, and the expression of eight dysregulated genes was validated by quantitative real-time PCR. We found that there were a total of 7192 genes (5720 upregulated and 1472 downregulated, fold-change ≥ 2 or ≤ 0.5 for upregulation or downregulation, q-value < 0.05) differentially expressed in NaB-treated cells as compared with the untreated controls. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that the differentially expressed genes were enriched in DNA replication, cell cycle, homologous recombination, pyrimidine metabolism, mismatch repair, and other signaling pathways and may take part in NaB-induced cell death. Among the identified factors, the MCM2-7 complex might be a target of NaB. Our findings provide an important basis for further studies of the complicate network that might regulate sensitivity of colorectal cancer cells to NaB.


Assuntos
Ácido Butírico/farmacologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Análise de Sequência de RNA , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Ontologia Genética , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA