Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 475(10): 1739-1753, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29717023

RESUMO

The molybdenum cofactor (Moco) is a redox-active prosthetic group found in the active site of Moco-dependent enzymes, which are vitally important for life. Moco biosynthesis involves several enzymes that catalyze the subsequent conversion of GTP into cyclic pyranopterin monophosphate (cPMP), molybdopterin (MPT), adenylated MPT (MPT-AMP), and finally Moco. While the underlying principles of cPMP, MPT, and MPT-AMP formation are well understood, the molybdenum insertase (Mo-insertase)-catalyzed final Moco maturation step is not. In the present study, we analyzed high-resolution X-ray datasets of the plant Mo-insertase Cnx1E that revealed two molybdate-binding sites within the active site, hence improving the current view on Cnx1E functionality. The presence of molybdate anions in either of these sites is tied to a distinctive backbone conformation, which we suggest to be essential for Mo-insertase molybdate selectivity and insertion efficiency.


Assuntos
Coenzimas/metabolismo , Eucariotos/enzimologia , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Pteridinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Coenzimas/química , Metaloproteínas/química , Metaloproteínas/genética , Molibdênio/química , Cofatores de Molibdênio , Mutação , Conformação Proteica , Pteridinas/química , Homologia de Sequência
2.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31860061

RESUMO

Molybdenum insertases (Mo-insertases) catalyze the final step of molybdenum cofactor (Moco) biosynthesis, an evolutionary old and highly conserved multi-step pathway. In the first step of the pathway, GTP serves as substrate for the formation of cyclic pyranopterin monophosphate, which is subsequently converted into molybdopterin (MPT) in the second pathway step. In the following synthesis steps, MPT is adenylated yielding MPT-AMP that is subsequently used as substrate for enzyme catalyzed molybdate insertion. Molybdate insertion and MPT-AMP hydrolysis are catalyzed by the Mo-insertase E-domain. Earlier work reported a highly conserved aspartate residue to be essential for Mo-insertase functionality. In this work, we confirmed the mechanistic relevance of this residue for the Arabidopsis thaliana Mo-insertase Cnx1E. We found that the conservative substitution of Cnx1E residue Asp274 by Glu (D274E) leads to an arrest of MPT-AMP hydrolysis and hence to the accumulation of MPT-AMP. We further showed that the MPT-AMP accumulation goes in hand with the accumulation of molybdate. By crystallization and structure determination of the Cnx1E variant D274E, we identified the potential reason for the missing hydrolysis activity in the disorder of the region spanning amino acids 269 to 274. We reasoned that this is caused by the inability of a glutamate in position 274 to coordinate the octahedral Mg2+-water complex in the Cnx1E active site.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Catálise , Domínio Catalítico , Hidrólise , Molibdênio/metabolismo , Cofatores de Molibdênio , Compostos Organofosforados/metabolismo , Pterinas/metabolismo
3.
Biosci Rep ; 34(4)2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24962471

RESUMO

Leishmania major was proposed to either utilize haem from its host or partially synthesize the tetrapyrrole from host provided precursors. However, only indirect evidence was available for this partial late haem biosynthetic pathway. Here, we demonstrate that the LMJF_06_1280 gene of L. major encodes a HemG-type PPO (protoporphyrinogen IX oxidase) catalysing the oxidation of protoporphyrinogen IX to protoporphyrin IX. Interestingly, trypanosomatids are currently the only known eukaryotes possessing HemG-type enzymes. The LMJF_06_1280 gene forms a potential transcriptional unit with LMJF_06_1270 encoding CPO (coproporphyrinogen III oxidase) and with LMJF_06_1290 for a cytochrome b5. In vivo function of the L. major hemG gene was shown by the functional complementation of the Escherichia coli ΔhemG strain LG285. Restored haem formation in E. coli was observed using HPLC analyses. Purified recombinant L. major HemG revealed PPO activity in vitro using different ubiquinones and triphenyltetrazolium as electron acceptors. FMN was identified as the L. major HemG cofactor. Active site residues were found to be essential for HemG catalysis. These data in combination with the solved crystal structures of L. major CPO and the physiological proof of a ferrochelatase activity provide clear-cut evidence for a partial haem biosynthetic pathway in L. major.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Leishmania major/genética , Protoporfirinogênio Oxidase/genética , Domínio Catalítico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA