Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 146(5): 052803, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178832

RESUMO

We study nucleation and multilayer growth of the perylene derivative PTCDI-C8 and find a persistent layer-by-layer growth, transformation of island shapes, and an enhancement of molecular diffusivity in upper monolayers (MLs). These findings result from the evaluation of the ML-dependent island densities, obtained by in situ real-time grazing incidence small angle X-ray scattering measurements and simultaneous X-ray growth oscillations. Complementary ex situ atomic force microscopy snapshots of different growth stages agree quantitatively with both X-ray techniques. The rate and temperature-dependent island density is analyzed using different mean-field nucleation models. Both a diffusion limited aggregation and an attachment limited aggregation model yield in the first two MLs the same critical nucleus size i, similar surface diffusion attempt frequencies in the 1019-1020 s-1 range, and a decrease of the diffusion barrier Ed in the 2nd ML by 140 meV.

2.
J Chem Phys ; 143(16): 164707, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26520543

RESUMO

We use thermal annealing to improve smoothness and to increase the lateral size of crystalline islands of n-tetratetracontane (TTC, C44H90) films. With in situ x-ray diffraction, we find an optimum temperature range leading to improved texture and crystallinity while avoiding an irreversible phase transition that reduces crystallinity again. We employ real-time optical phase contrast microscopy with sub-nm height resolution to track the diffusion of TTC across monomolecular step edges which causes the unusual smoothing of a molecular thin film during annealing. We show that the lateral island sizes increase by more than one order of magnitude from 0.5 µm to 10 µm. This desirable behavior of 2d-Ostwald ripening and smoothing is in contrast to many other organic molecular films where annealing leads to dewetting, roughening, and a pronounced 3d morphology. We rationalize the smoothing behavior with the highly anisotropic attachment energies and low surface energies for TTC. The results are technically relevant for the use of TTC as passivation layer and as gate dielectric in organic field effect transistors.

3.
Adv Mater ; 29(6)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27906475

RESUMO

A novel strategy for direct photoalignment of molecular materials using optothermal re-orientation is introduced. Photoalignment for molecular materials such as the organic semiconductor tetracene is shown, without relying on additional photoreactive dopants or alignment layers. Patterning and polarized light emission, e.g., for polarized organic light emitting diodes is demonstrated.

4.
Sci Rep ; 6: 25605, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161608

RESUMO

Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.

5.
ACS Appl Mater Interfaces ; 6(23): 21484-93, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25398074

RESUMO

The microstructure, morphology, and growth dynamics of hexa-peri-hexabenzocoronene (HBC, C42H18) thin films deposited on inert substrates of similar surface energies are studied with particular emphasis on the influence of substrate symmetry and substrate-molecule lattice matching on the resulting films of this material. By combining atomic force microscopy (AFM) with X-ray diffraction (XRD), X-ray absorption spectroscopy (NEXAFS), and in situ X-ray reflectivity (XRR) measurements, it is shown that HBC forms polycrystalline films on SiO2, where molecules are oriented in an upright fashion and adopt the known bulk structure. Remarkably, HBC films deposited on highly oriented pyrolytic graphite (HOPG) exhibit a new, substrate-induced polymorph, where all molecules adopt a recumbent orientation with planar π-stacking. Formation of this new phase, however, depends critically on the coherence of the underlying graphite lattice since HBC grown on defective HOPG reveals the same orientation and phase as on SiO2. These results therefore demonstrate that the resulting film structure and morphology are not solely governed by the adsorption energy but also by the presence or absence of symmetry- and lattice-matching between the substrate and admolecules. Moreover, it highlights that weakly interacting substrates of high quality and coherence can be useful to induce new polymorphs with distinctly different molecular arrangements than the bulk structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA