Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nucleic Acids Res ; 51(4): e22, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629249

RESUMO

During each cell division, tens of thousands of DNA replication origins are co-ordinately activated to ensure the complete duplication of the human genome. However, replication fork progression can be challenged by many factors, including co-directional and head-on transcription-replication conflicts (TRC). Head-on TRCs are more dangerous for genome integrity. To study the direction of replication fork movement and TRCs, we developed a bioinformatics toolkit called OKseqHMM (https://github.com/CL-CHEN-Lab/OK-Seq, https://doi.org/10.5281/zenodo.7428883). Then, we used OKseqHMM to analyse a large number of datasets obtained by Okazaki fragment sequencing to directly measure the genome-wide replication fork directionality (RFD) and to accurately predict replication initiation and termination at a fine resolution in organisms including yeast, mouse and human. We also successfully applied our analysis to other genome-wide sequencing techniques that also contain RFD information (e.g. eSPAN, TrAEL-seq). Our toolkit can be used to predict replication initiation and fork progression direction genome-wide in a wide range of cell models and growth conditions. Comparing the replication and transcription directions allows identifying loci at risk of TRCs, particularly head-on TRCs, and investigating their role in genome instability by checking DNA damage data, which is of prime importance for human health.


Assuntos
Replicação do DNA , Instabilidade Genômica , Software , Animais , Humanos , Camundongos , Dano ao DNA , Origem de Replicação , Saccharomyces cerevisiae/genética
2.
BMC Genomics ; 19(1): 118, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402217

RESUMO

BACKGROUND: Next-generation sequencing technologies have revolutionized the study of small RNAs (sRNAs) on a genome-wide scale. However, classical sRNA library preparation methods introduce serious bias, mainly during adapter ligation steps. Several types of sRNA including plant microRNAs (miRNA), piwi-interacting RNAs (piRNA) in insects, nematodes and mammals, and small interfering RNAs (siRNA) in insects and plants contain a 2'-O-methyl (2'-OMe) modification at their 3' terminal nucleotide. This inhibits 3' adapter ligation and makes library preparation particularly challenging. To reduce bias, the NEBNext kit (New England Biolabs) uses polyethylene glycol (PEG), the NEXTflex V2 kit (BIOO Scientific) uses both randomised adapters and PEG, and the novel SMARTer (Clontech) and CATS (Diagenode) kits avoid ligation altogether. Here we compared these methods with Illumina's classical TruSeq protocol regarding the detection of normal and 2' OMe RNAs. In addition, we modified the TruSeq and NEXTflex protocols to identify conditions that improve performance. RESULTS: Among the five kits tested with their respective standard protocols, the SMARTer and CATS kits had the lowest levels of bias but also had a strong formation of side products, and as a result performed relatively poorly with biological samples; NEXTflex detected the largest numbers of different miRNAs. The use of a novel type of randomised adapters called MidRand-Like (MRL) adapters and PEG improved the detection of 2' OMe RNAs both in the TruSeq as well as in the NEXTflex protocol. CONCLUSIONS: While it is commonly accepted that biases in sRNA library preparation protocols are mainly due to adapter ligation steps, the ligation-free protocols were not the best performing methods. Our modified versions of the TruSeq and NEXTflex protocols provide an improved tool for the study of 2' OMe RNAs.


Assuntos
Biologia Computacional , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Análise de Sequência de RNA , Animais , Viés , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , MicroRNAs/química , Conformação de Ácido Nucleico , Plantas/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas
3.
EMBO J ; 31(19): 3935-48, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23032188

RESUMO

The Nrd1-Nab3-Sen1 (NNS) complex pathway is responsible for transcription termination of cryptic unstable transcripts and sn/snoRNAs. The NNS complex recognizes short motifs on the nascent RNA, but the presence of these sequences alone is not sufficient to define a functional terminator. We generated a homogeneous set of several hundreds of artificial, NNS-dependent terminators with an in vivo selection approach. Analysis of these terminators revealed novel and extended sequence determinants for transcription termination and NNS complex binding as well as supermotifs that are critical for termination. Biochemical and structural data revealed that affinity and specificity of RNA recognition by Nab3p relies on induced fit recognition implicating an α-helical extension of the RNA recognition motif. Interestingly, the same motifs can be recognized by the NNS or the mRNA termination complex depending on their position relative to the start of transcription, suggesting that they function as general transcriptional insulators to prevent interference between the non-coding and the coding yeast transcriptomes.


Assuntos
DNA Helicases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , DNA Helicases/química , Dados de Sequência Molecular , Proteínas Nucleares/química , Ligação Proteica , RNA Helicases/química , Proteínas de Ligação a RNA/química , Técnica de Seleção de Aptâmeros , Proteínas de Saccharomyces cerevisiae/química
4.
Nature ; 457(7232): 1038-42, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19169244

RESUMO

Pervasive and hidden transcription is widespread in eukaryotes, but its global level, the mechanisms from which it originates and its functional significance are unclear. Cryptic unstable transcripts (CUTs) were recently described as a principal class of RNA polymerase II transcripts in Saccharomyces cerevisiae. These transcripts are targeted for degradation immediately after synthesis by the action of the Nrd1-exosome-TRAMP complexes. Although CUT degradation mechanisms have been analysed in detail, the genome-wide distribution at the nucleotide resolution and the prevalence of CUTs are unknown. Here we report the first high-resolution genomic map of CUTs in yeast, revealing a class of potentially functional CUTs and the intrinsic bidirectional nature of eukaryotic promoters. An RNA fraction highly enriched in CUTs was analysed by a 3' Long-SAGE (serial analysis of gene expression) approach adapted to deep sequencing. The resulting detailed genomic map of CUTs revealed that they derive from extremely widespread and very well defined transcription units and do not result from unspecific transcriptional noise. Moreover, the transcription of CUTs predominantly arises within nucleosome-free regions, most of which correspond to promoter regions of bona fide genes. Some of the CUTs start upstream from messenger RNAs and overlap their 5' end. Our study of glycolysis genes, as well as recent results from the literature, indicate that such concurrent transcription is potentially associated with regulatory mechanisms. Our data reveal numerous new CUTs with such a potential regulatory role. However, most of the identified CUTs corresponded to transcripts divergent from the promoter regions of genes, indicating that they represent by-products of divergent transcription occurring at many and possibly most promoters. Eukaryotic promoter regions are thus intrinsically bidirectional, a fundamental property that escaped previous analyses because in most cases divergent transcription generates short-lived unstable transcripts present at very low steady-state levels.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Regiões 5' não Traduzidas/genética , Genoma Fúngico/genética , Glicólise/genética , RNA Polimerase II/metabolismo , Estabilidade de RNA/genética , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
BMC Bioinformatics ; 15: 198, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24938393

RESUMO

BACKGROUND: Detection of large genomic rearrangements, such as large indels, duplications or translocations is now commonly achieved by next generation sequencing (NGS) approaches. Recently, several tools have been developed to analyze NGS data but the resulting files are difficult to interpret without an additional visualization step. Circos (Genome Res, 19:1639-1645, 2009), a Perl script, is a powerful visualization software that requires setting up numerous configuration files with a large number of parameters to handle. R packages like RCircos (BMC Bioinformatics, 14:244, 2013) or ggbio (Genome Biol, 13:R77, 2012) provide functions to display genomic data as circular Circos-like plots. However, these tools are very general and lack the functions needed to filter, format and adjust specific input genomic data. RESULTS: We implemented an R package called CIRCUS to analyze genomic structural variations. It generates both data and configuration files necessary for Circos, to produce graphs. Only few R pre-requisites are necessary. Options are available to deal with heterogeneous data, various chromosome numbers and multi-scale analysis. CONCLUSION: CIRCUS allows fast and versatile analysis of genomic structural variants with Circos plots for users with limited coding skills.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Design de Software , Genômica/métodos
6.
Subcell Biochem ; 61: 57-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23150246

RESUMO

In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.


Assuntos
Montagem e Desmontagem da Cromatina , Replicação do DNA , DNA/biossíntese , Genoma Humano , Histonas/metabolismo , Sequências Reguladoras de Ácido Nucleico , DNA/química , Regulação da Expressão Gênica , Histonas/química , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Conformação Proteica , Origem de Replicação , Relação Estrutura-Atividade
7.
Genome Res ; 20(1): 59-67, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19858362

RESUMO

Numerous studies of chromatin structure showed that nucleosome free regions (NFRs) located at 5' gene ends contribute to transcription initiation regulation. Here, we determine the role of intragenic chromatin structure on gene expression regulation. We show that, along Saccharomyces cerevisiae genes, nucleosomes are highly organized following two types of architecture that depend only on the distance between the NFRs located at the 5' and 3' gene ends. In the first type, this distance constrains in vivo the positioning of n nucleosomes regularly organized in a "crystal-like" array. In the second type, this distance is such that the corresponding genes can accommodate either n or (n + 1) nucleosomes, thereby displaying two possible crystal-like arrays of n weakly compacted or n + 1 highly compacted nucleosomes. This adaptability confers "bi-stable" properties to chromatin and is a key to its dynamics. Compared to crystal-like genes, bi-stable genes present higher transcriptional plasticity, higher sensitivity to chromatin regulators, higher H3 turnover rate, and lower H2A.Z enrichment. The results strongly suggest that transcription elongation is facilitated by higher chromatin compaction. The data allow us to propose a new paradigm of transcriptional control mediated by the stability and the level of compaction of the intragenic chromatin architecture and open new ways for investigating eukaryotic gene expression regulation.


Assuntos
Cromatina/ultraestrutura , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cristalização , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Sítio de Iniciação de Transcrição , Transcrição Gênica
8.
Genome Res ; 20(4): 447-57, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20103589

RESUMO

Neutral nucleotide substitutions occur at varying rates along genomes, and it remains a major issue to unravel the mechanisms that cause these variations and to analyze their evolutionary consequences. Here, we study the role of replication in the neutral substitution pattern. We obtained a high-resolution replication timing profile of the whole human genome by massively parallel sequencing of nascent BrdU-labeled replicating DNA. These data were compared to the neutral substitution rates along the human genome, obtained by aligning human and chimpanzee genomes using macaque and orangutan as outgroups. All substitution rates increase monotonously with replication timing even after controlling for local or regional nucleotide composition, crossover rate, distance to telomeres, and chromatin compaction. The increase in non-CpG substitution rates might result from several mechanisms including the increase in mutation-prone activities or the decrease in efficiency of DNA repair during the S phase. In contrast, the rate of C --> T transitions in CpG dinucleotides increases in later-replicating regions due to increasing DNA methylation level that reflects a negative correlation between timing and gene expression. Similar results are observed in the mouse, which indicates that replication timing is a main factor affecting nucleotide substitution dynamics at non-CpG sites and constitutes a major neutral process driving mammalian genome evolution.


Assuntos
Ilhas de CpG/genética , Período de Replicação do DNA/fisiologia , Genoma , Mutação de Sentido Incorreto , Animais , Replicação do DNA/genética , Replicação do DNA/fisiologia , Drosophila , Evolução Molecular , Genoma/genética , Genoma Humano , Células HeLa , Humanos , Macaca/genética , Mamíferos/genética , Camundongos , Mutação de Sentido Incorreto/fisiologia , Pan troglodytes/genética , Pongo pygmaeus/genética , Ratos
9.
PLoS Comput Biol ; 8(4): e1002443, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496629

RESUMO

In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome.


Assuntos
Mapeamento Cromossômico/métodos , Replicação do DNA/genética , DNA/genética , Genoma Humano/genética , Genoma/genética , Modelos Genéticos , Origem de Replicação/genética , Sequência de Bases , Linhagem Celular , Simulação por Computador , Humanos , Dados de Sequência Molecular
10.
Nat Protoc ; 18(4): 1260-1295, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653528

RESUMO

Studying the dynamics of genome replication in mammalian cells has been historically challenging. To reveal the location of replication initiation and termination in the human genome, we developed Okazaki fragment sequencing (OK-seq), a quantitative approach based on the isolation and strand-specific sequencing of Okazaki fragments, the lagging strand replication intermediates. OK-seq quantitates the proportion of leftward- and rightward-oriented forks at every genomic locus and reveals the location and efficiency of replication initiation and termination events. Here we provide the detailed experimental procedures for performing OK-seq in unperturbed cultured human cells and budding yeast and the bioinformatics pipelines for data processing and computation of replication fork directionality. Furthermore, we present the analytical approach based on a hidden Markov model, which allows automated detection of ascending, descending and flat replication fork directionality segments revealing the zones of replication initiation, termination and unidirectional fork movement across the entire genome. These tools are essential for the accurate interpretation of human and yeast replication programs. The experiments and the data processing can be accomplished within six days. Besides revealing the genome replication program in fine detail, OK-seq has been instrumental in numerous studies unravelling mechanisms of genome stability, epigenome maintenance and genome evolution.


Assuntos
Replicação do DNA , DNA , Humanos , DNA/genética , Genômica , Biologia Computacional , Saccharomyces cerevisiae/genética
11.
Mol Biol Evol ; 28(8): 2327-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21368316

RESUMO

During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results demonstrate that DNA replication is one of the major processes that shape human genome composition.


Assuntos
Replicação do DNA/genética , Genoma Humano/genética , Mutação/genética , Composição de Bases , Linhagem Celular , Evolução Molecular , Células Germinativas/metabolismo , Células HeLa , Humanos , Células K562 , Modelos Genéticos , Especificidade de Órgãos/genética
12.
PLoS Comput Biol ; 7(12): e1002322, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22219720

RESUMO

Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.


Assuntos
Genoma Humano , Origem de Replicação , Separação Celular , Biologia Computacional/métodos , Replicação do DNA , Citometria de Fluxo , Técnicas Genéticas , Células HeLa , Humanos , Cinética , Modelos Genéticos , Modelos Estatísticos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Fatores de Tempo
13.
Mol Biol Evol ; 27(12): 2829-38, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20616144

RESUMO

It is now well established that there were four Hox gene clusters in the genome of the last common ancestor of extant gnathostomes. To better understand the evolution of the organization and expression of these genomic regions, we have studied the Hox gene clusters of a shark (Scyliorhinus canicula). We sequenced 225,580 expressed sequence tags from several embryonic cDNA libraries. Blast searches identified corresponding transcripts to almost all the HoxA, HoxB, and HoxD cluster genes. No HoxC transcript was identified, suggesting that this cluster is absent or highly degenerate. Using Hox gene sequences as probes, we selected and sequenced seven clones from a bacterial artificial chromosome library covering the complete region of the three gene clusters. Mapping of cDNAs to these genomic sequences showed extensive alternative splicing and untranslated exon sharing between neighboring Hox genes. Homologous noncoding exons could not be identified in transcripts from other species using sequence similarity. However, by comparing conserved noncoding sequences upstream of these exons in different species, we were able to identify homology between some exons. Some alternative splicing variants are probably very ancient and were already coded for by the ancestral Hox gene cluster. We also identified several transcripts that do not code for Hox proteins, are probably not translated, and all but one are in the reverse orientation to the Hox genes. This survey of the transcriptome of the Hox gene clusters of a shark shows that the high complexity observed in mammals is a gnathostome ancestral feature.


Assuntos
Evolução Molecular , Genes Homeobox , Família Multigênica , Tubarões/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Éxons , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Biblioteca Gênica , Proteínas de Homeodomínio/genética , Dados de Sequência Molecular , Filogenia
14.
Nucleic Acids Res ; 37(18): 6064-75, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19671527

RESUMO

For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions approximately 300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as 'master' replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these 'master' origins are likely to play a key role in genome dynamics during evolution and in pathological situations.


Assuntos
Cromatina/química , DNA/química , Origem de Replicação , Sequência de Bases , Instabilidade Cromossômica , Mapeamento Cromossômico , Metilação de DNA , Desoxirribonuclease I , Humanos , Sítio de Iniciação de Transcrição
15.
Nucleic Acids Res ; 36(11): 3746-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18487627

RESUMO

Nucleosome positioning plays an essential role in cellular processes by modulating accessibility of DNA to proteins. Here, using only sequence-dependent DNA flexibility and intrinsic curvature, we predict the nucleosome occupancy along the genomes of Saccharomyces cerevisiae and Drosophila melanogaster and demonstrate the predictive power and universality of our model through its correlation with experimentally determined nucleosome occupancy data. In yeast promoter regions, the computed average nucleosome occupancy closely superimposes with experimental data, exhibiting a <200 bp region unfavourable for nucleosome formation bordered by regions that facilitate nucleosome formation. In the fly, our model faithfully predicts promoter strength as encoded in distinct chromatin architectures characteristic of strongly and weakly expressed genes. We also predict that nucleosomes are repositioned by active mechanisms at the majority of fly promoters. Our model uses only basic physical properties to describe the wrapping of DNA around the histone core, yet it captures a substantial part of chromatin's structural complexity, thus leading to a much better prediction of nucleosome occupancy than methods based merely on periodic curved DNA motifs. Our results indicate that the physical properties of the DNA chain, and not just the regulatory factors and chromatin-modifying enzymes, play key roles in eukaryotic transcription.


Assuntos
DNA/química , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Nucleossomos/química , Saccharomyces cerevisiae/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos , Genômica , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Termodinâmica , Leveduras/genética
16.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700138

RESUMO

The mitochondrial genomes of Saccharomyces cerevisiae strains contain up to 13 introns. An intronless recombinant genome introduced into the nuclear background of S. cerevisiae strain W303 gave the S. cerevisiae CW252 strain, which is used to model mitochondrial respiratory pathologies. The complete sequence of this mitochondrial genome was obtained using a hybrid assembling methodology.

17.
Nucleic Acids Res ; 32(17): 4969-78, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15388799

RESUMO

Under no-strand bias conditions, each genomic DNA strand should present equimolarities of A and T and of G and C. Deviations from these rules are attributed to asymmetric properties intrinsic to DNA mutation-repair processes. In bacteria, strand biases are associated with replication or transcription. In eukaryotes, recent studies demonstrate that human genes present transcription-coupled biases that might reflect transcription-coupled repair processes. Here, we study strand asymmetries in intron sequences of evolutionarily distant eukaryotes, and show that two superimposed intron biases can be distinguished. (i) Biases that are maximum at intron extremities and decrease over large distances to zero values in internal regions, possibly reflecting interactions between pre-mRNA and splicing machinery; these extend over approximately 0.5 kb in mammals and Arabidopsis thaliana, and over 1 kb in Caenorhabditis elegans and Drosophila melanogaster. (ii) Biases that are constant along introns, possibly associated with transcription. Strikingly, in C.elegans, these latter biases extend over intergenic regions that separate co-oriented genes. When appropriately examined, all genomes present transcription-coupled excess of T over A in the coding strand. On the opposite, GC skews are either positive (mammals, plants) or negative (invertebrates). These results suggest that transcription-coupled asymmetries result from mutation-repair mechanisms that differ between vertebrates and invertebrates.


Assuntos
Genoma , Splicing de RNA , Transcrição Gênica , Animais , Arabidopsis/genética , Caenorhabditis elegans/genética , Reparo do DNA , Drosophila melanogaster/genética , Íntrons , Invertebrados/genética , Mamíferos/genética , Mutação , Análise de Sequência de DNA , Vertebrados/genética
18.
Nat Commun ; 7: 10208, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751768

RESUMO

Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border 'topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs.


Assuntos
Replicação do DNA , Genoma Humano , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Sítios de Ligação , Cromatina/metabolismo , DNA , Histonas/metabolismo , Humanos , Análise de Sequência de DNA , Transcrição Gênica
19.
J Mol Biol ; 316(4): 903-18, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11884131

RESUMO

It has been established that the precise positioning of nucleosomes on genomic DNA can be achieved, at least for a minority of them, through sequence-dependent processes. However, to what extent DNA sequences play a role in the positioning of the major part of nucleosomes is still debated. The aim of the present study is to examine to what extent long-range correlations (LRC) are related to the presence of nucleosomes. Using the wavelet transform technique, we perform a comparative analysis of the DNA text and of the corresponding bending profiles generated with curvature tables based on nucleosome positioning data. The exploration of a number of eukaryotic and bacterial genomes through the optics of the so-called "wavelet transform microscope" reveals a characteristic scale of 100-200 bp that separates two regimes of different LRC. Here, we focus on the existence of LRC in the small-scale regime (10-200 bp) which are actually observed in eukaryotic genomes, in contrast to their absence in eubacterial genomes. Analysis of viral DNA genomes shows that, like their host's genomes, eukaryotic viruses present LRC but eubacterial viruses do not. There is one exception for genomes of poxviruses (Vaccinia and Melamoplus sanguinipes) which do not replicate in the cell nucleus and do not exhibit LRC. No small-scale LRC are detected in the genomes of all examined RNA viruses, with the exception of retroviruses. These results together with the observation of LRC between particular sequence motifs known to participate in the formation of nucleosomes (e.g. AA dinucleotides) strongly suggest that the 10-200 bp LRC are a signature of the sequence-dependence of nucleosome positioning. Finally, we discuss possible interpretations of these LRC in terms of the physical mechanisms that might govern the positioning and the dynamics of the nucleosomes along the DNA chain through cooperative processes.


Assuntos
DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/metabolismo , Bactérias/genética , Composição de Bases , DNA/genética , Código Genético , Genoma Bacteriano , Genoma Fúngico , Genoma Viral , Dados de Sequência Molecular , Nucleossomos/genética , Óptica e Fotônica , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
20.
Nat Protoc ; 8(1): 98-110, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23237832

RESUMO

In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.


Assuntos
Algoritmos , Período de Replicação do DNA , Genoma Humano , Software , Análise de Ondaletas , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA