RESUMO
CONTEXT: Due to advances in synthesizing lower-dimensional materials, there is the challenge of finding the wave equation that effectively describes quantum particles moving on 1D and 2D domains. Jensen and Koppe and Da Costa independently introduced a confining potential formalism showing that the effective constrained dynamics is subjected to a scalar geometry-induced potential; for the confinement to a curve, the potential depends on the curve's curvature function. METHOD: To characterize the π electrons in polyenes, we follow two approaches. First, we utilize a weakened Coulomb potential associated with a spiral curve. The solution to the Schrödinger equation with Dirichlet boundary conditions yields Bessel functions, and the spectrum is obtained analytically. We employ the particle-in-a-box model in the second approach, incorporating effective mass corrections. The π - π ∗ transitions of polyenes were calculated in good experimental agreement with both approaches, although with different wave functions.
RESUMO
Minimal surfaces arise as energy minimizers for fluid membranes and are thus found in a variety of biological systems. The tight lamellar structures of the endoplasmic reticulum and plant thylakoids are comprised of such minimal surfaces in which right- and left-handed helical motifs are embedded in stoichiometry suggesting global pitch balance. So far, the analytical treatment of helical motifs in minimal surfaces was limited to the small-slope approximation where motifs are represented by the graph of harmonic functions. However, in most biologically and physically relevant regimes the inter-motif separation is comparable with its pitch, and thus this approximation fails. Here, we present a recipe for constructing exact minimal surfaces with an arbitrary distribution of helical motifs, showing that any harmonic graph can be deformed into a minimal surface by exploiting lateral displacements only. We analyse in detail pairs of motifs of the similar and of opposite handedness and also an infinite chain of identical motifs with similar or alternating handedness. Last, we study the second variation of the area functional for collections of helical motifs with asymptotic helicoidal structure and show that in this subclass of minimal surfaces stability requires that the collection of motifs is pitch balanced.