Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Mar Drugs ; 22(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393048

RESUMO

Marine biofouling is a major concern for the maritime industry, environment, and human health. Biocides which are currently used in marine coatings to prevent this phenomenon are toxic to the marine environment, and therefore a search for antifoulants with environmentally safe properties is needed. A large number of scientific papers have been published showing natural and synthetic compounds with potential to prevent the attachment of macro- and microfouling marine organisms on submerged surfaces. Flavonoids are a class of compounds which are highly present in nature, including in marine organisms, and have been found in a wide range of biological activities. Some natural and synthetic flavonoids have been evaluated over the last few years for their potential to prevent the settlement and/or the growth of marine organisms on submerged structures, thereby preventing marine biofouling. This review compiles, for the first-time, natural flavonoids as well as their synthetic analogues with attributed antifouling activity against macrofouling and microfouling marine organisms.


Assuntos
Incrustação Biológica , Desinfetantes , Humanos , Incrustação Biológica/prevenção & controle , Organismos Aquáticos , Desinfetantes/farmacologia
2.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865941

RESUMO

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Assuntos
Incrustação Biológica , Larva , Mytilus , Animais , Incrustação Biológica/prevenção & controle , Larva/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/química , Relação Estrutura-Atividade , Chalcona/farmacologia , Chalcona/análogos & derivados , Chalcona/química , Desinfetantes/toxicidade , Desinfetantes/farmacologia
3.
Vet Anaesth Analg ; 51(1): 64-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919174

RESUMO

OBJECTIVE: To evaluate effects of lidocaine 2% administration into the ovarian pedicle on intraoperative nociception and early postoperative pain in dogs undergoing ovariohysterectomy. STUDY DESIGN: Prospective, randomized, blinded clinical study. ANIMALS: A total of 20 healthy adult female dogs of different breeds. METHODS: Dogs were premedicated with acepromazine (0.02 mg kg-1) and morphine (0.5 mg kg-1) intramuscularly, anesthesia induced with propofol and maintained with isoflurane. Dogs were randomly assigned to be administered 2 mL of saline (group S) or lidocaine 2% (group L) into the mesovarium (1 mL each side). Heart rate (HR) and noninvasive systemic arterial pressure were recorded before surgery (T0), before (T1) and during ligation of the right ovarian pedicle (T2), before (T3) and during ligation of the left ovarian pedicle (T4). Rescue treatment (propofol) was administered if HR or systolic arterial pressure (SAP) increased by 20% compared with the previous time point. Pain, assessed with the Glasgow Composite Measure Pain Scale-Short Form (CMPS-SF) was recorded before premedication (baseline) and after extubation. Administration of postoperative rescue analgesia was recorded. RESULTS: In group S, HR was higher at T2 than T1 (112 ± 18 versus 89 ± 21 beats minute-1, p = 0.001) There were no significant differences between treatments at any time. SAP was higher at T2 than T1 in group S (110 ± 12 versus 100 ± 10 mmHg, p = 0.031). SAP was higher in group S than group L at T3 (113 ± 12 and 91 ± 10 mmHg, respectively, p = 0.001). No dogs required propofol intraoperatively. All dogs required postoperative rescue analgesia. Compared with baseline, CMPS-SF increased 60 minutes after extubation (group S; p = 0.019, group L; p = 0.043). CONCLUSIONS AND CLINICAL RELEVANCE: Administration of lidocaine 2% into the mesovarium did not reduce intraoperative nociception and did not improve postoperative analgesia.


Assuntos
Doenças do Cão , Propofol , Cães , Feminino , Animais , Lidocaína , Estudos Prospectivos , Histerectomia/veterinária , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/veterinária , Dor Pós-Operatória/tratamento farmacológico , Ovariectomia/veterinária
4.
Artigo em Inglês | MEDLINE | ID: mdl-38351838

RESUMO

Although coronary angiography (CA) is the gold standard for coronary allograft vasculopathy (CAV) screening, non-invasive modalities have arisen as potential alternatives, such as coronary computed tomography angiography (CCTA). CCTA also quantifies plaque burden, which may influence medical treatment. From January 2021 to April 2022, we prospectively included heart transplant recipients who performed CCTA as a first-line method for CAV detection in a single center. Clinical, CCTA, and CA data were collected. 38 patients were included, 60.5% men, aged 58±14 years. The most frequent cause of transplantation was dilated cardiomyopathy (42.1%), and the median graft duration was 10 years [interquartile range (IQR) 9]. The median left ventricle ejection fraction was 61.5% (IQR 6). The median calcium score was 17 (IQR 231) and 32 patients (84.2%) proceeded to CCTA: 7, 24, and 1 patients had a graded CAV of 0, 1, and 2, respectively. Most patients (37.5%) had both calcified and non-calcified plaques, and the median number of affected segments was 2 (IQR 3). The remaining six patients had extensive coronary calcification, so CA was performed: 4 had CAV1, 1 had CAV2, and 1 had CAV3. During follow-up (12.2±4.2 months), there were neither deaths nor acute coronary syndromes. After CCTA, therapeutic changes occurred in about 10 (26.3%) of patients, mainly related to anti-lipid intensification; such changes were more frequent in patients with diabetes after heart transplant. In this cohort, CCTA led to therapeutic changes in about one-quarter of patients; more studies are needed to assess how CCT may guide therapy according to plaque burden.

5.
Molecules ; 28(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049922

RESUMO

Resveratrol (RSV), a naturally occurring metabolite, is widely used in skincare products, but its hydrophobicity impairs its own incorporation into cosmetic formulations. RSV-GS is a synthetic hydrophilic sulfated glycosylated derivative inspired by marine natural products that present a lower cytotoxicity than RSV while exhibiting similar levels of bioactivity. Herein, we predict the skin sensitization potential of this new compound using an in vitro approach based on the OECD 442E guideline. Furthermore, the anti-allergic potential of RSV-GS was also disclosed. The monocyte THP-1 cell line was stimulated with RSV and RSV-GS in the presence or absence of the extreme skin allergen 1-fluoro-2,4-dinitrobenzene (DNFB). The results demonstrated that RSV-GS alone (500 µM) evoked a relative fluorescence index (RFI) lower than the thresholds established by the OECD guideline for CD54 (200%) and CD86 (150%), indicating the absence of a skin sensitization potential. Interestingly, in the presence of the skin allergen DNFB, RSV-GS exhibited the ability to rescue the DNFB-induced maturation of THP-1 cells, with RFI values lower than those for RSV, suggesting the potential of RSV-GS to mitigate skin sensitization evoked by allergens and, consequently, allergic contact dermatitis. These results open new avenues for the use of RSV-GS as a safe and anti-allergic active cosmetic ingredient.


Assuntos
Antialérgicos , Resveratrol/farmacologia , Sulfatos , Dinitrofluorbenzeno , Alérgenos
6.
Molecules ; 28(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894682

RESUMO

The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on host cell surface glycans to facilitate interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor. This interaction between ACE2 and the spike protein is a gateway for the virus to enter host cells and may be targeted by antiviral drugs to inhibit viral infection. Therefore, targeting the interaction between these two proteins is an interesting strategy to prevent SARS-CoV-2 infection. A library of glycan mimetics and derivatives was selected for a virtual screening performed against both ACE2 and spike proteins. Subsequently, in vitro assays were performed on eleven of the most promising in silico compounds to evaluate: (i) their efficacy in inhibiting cell infection by SARS-CoV-2 (using the Vero CCL-81 cell line as a model), (ii) their impact on ACE2 expression (in the Vero CCL-81 and MDA-MB-231 cell lines), and (iii) their cytotoxicity in a human lung cell line (A549). We identified five synthetic compounds with the potential to block SARS-CoV-2 infection, three of them without relevant toxicity in human lung cells. Xanthene 1 stood out as the most promising anti-SARS-CoV-2 agent, inhibiting viral infection and viral replication in Vero CCL-81 cells, without causing cytotoxicity to human lung cells.


Assuntos
Antineoplásicos , COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Ligação Proteica , Antineoplásicos/farmacologia , Antivirais/farmacologia
7.
Plant Cell Environ ; 45(2): 528-541, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773419

RESUMO

The reasons underlying the differential tolerance of Actinidia spp. to the pandemic pathogen Pseudomonas syringae pv. actinidiae (Psa) have not yet been elucidated. We hypothesized that differential plant-defence strategies linked to transcriptome regulation, phytohormones and primary metabolism might be key and that Actinidia chinensis susceptibility results from an inefficient activation of defensive mechanisms and metabolic impairments shortly following infection. Here, 48 h postinoculation bacterial density was 10-fold higher in A. chinensis var. deliciosa than in Actinidia arguta, accompanied by significant increases in glutamine, ornithine, jasmonic acid (JA) and salicylic acid (SA) (up to 3.2-fold). Actinidia arguta showed decreased abscisic acid (ABA) (0.7-fold), no changes in primary metabolites, and 20 defence-related genes that were only differentially expressed in this species. These include GLOX1, FOX1, SN2 and RBOHA, which may contribute to its higher tolerance. Results suggest that A. chinensis' higher susceptibility to Psa is due to an inefficient activation of plant defences, with the involvement of ABA, JA and SA, leading to impairments in primary metabolism, particularly the ammonia assimilation cycle. A schematic overview on the interaction between Psa and genotypes with distinct tolerance is provided, highlighting the key transcriptomic and metabolomic aspects contributing to the different plant phenotypes after infection.


Assuntos
Actinidia/fisiologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Actinidia/microbiologia , Imunidade Vegetal/fisiologia
8.
Bioorg Chem ; 126: 105911, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661617

RESUMO

The addition of biocides to marine coatings has been the most used solution to avoid marine biofouling, however they are persistent, bioaccumulative, and toxic (PBT) to marine ecosystems. The development of natural products or Nature-inspired synthetic compounds to replace these harmfull biocides has been pursued as one of the most promising antifouling (AF) alternatives. Following a bioprospection strategy, we have previously reported the AF activity of gallic acid persulfate (1) against the settlement of Mytilus galloprovincialis larvae (EC50 = 18 µM and LC50/EC50 = 27) without exhibiting ecotoxicity to Artemia salina. In this work, a lead optimization strategy was applied to compound 1 in order to improve potency while maintaining a low ecotoxicity profile. In this direction, twenty-seven compounds were synthesized, from which eighteen were obtained for the first time. An AF screening was performed against the settlement of mussel M. galloprovincialis larvae and derivative 26, 2-(3,4,5-trihydroxybenzamido)ethan-1-aminium bromide, was found to be more potent (EC50 = 3 µM and LC50/EC50 = 73) than compound 1 and the biocide Econea® (EC50 = 4 µM). The potential impact on neurotransmission, and ecotoxicity against two non-target marine organisms was also evaluated. Marine polyurethane (PU)-based coatings containing compound 26 were prepared and lower adherence of mussel larvae was observed compared to compound 26 free PU-coatings. Studies concerning the leaching of compound 26 from the prepared coating were also conducted, and < 10% of this compound was detected after 45 days of submersion in water. Overall, we have optimized the potency against the settlement of mussels of our initial lead compound, not compromising the toxicity and compatibility with PU-based coatings.


Assuntos
Incrustação Biológica , Desinfetantes , Mytilus , Animais , Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Ecossistema , Ácido Gálico/farmacologia , Larva
9.
Mar Drugs ; 20(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135737

RESUMO

The development of marine-inspired compounds as non-toxic antifouling (AF) agents has been pursued in the last years. Sulfur is the third most common element in seawater. Sulfur is present in oxygenated seawater as sulfate anion (SO42-), which is the most stable combination of sulfur in seawater, and several promising AF secondary metabolites with sulfate groups have been described. However, sulfated compounds proved to be an analytical challenge to quantify by HPLC. Taking these facts into consideration, this work presents the development and validation of a method for the quantification of gallic acid persulfate (GAP) in seawater and ultrapure water matrix, based on hydrophilic interaction liquid chromatography (HILIC). This method was used to evaluate GAP stability following several abiotic and biotic degradation assays, and to quantify its release in seawater from room-temperature-vulcanizing polydimethylsiloxane commercial coating. GAP was very stable in several water matrices, even at different pH values and in the presence/absence of marine microorganisms and presented a leaching value lower than 0.5%. This work discloses HILIC as an analytical method to overcome the difficulties in quantifying sulfated compounds in water matrices and highlights the potential of GAP as a promising long-lasting coating.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos , Ácido Gálico , Água do Mar/química , Sulfatos , Enxofre , Água
10.
Mar Drugs ; 20(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36005510

RESUMO

The development of harmless substances to replace biocide-based coatings used to prevent or manage marine biofouling and its unwanted consequences is urgent. The formation of biofilms on submerged marine surfaces is one of the first steps in the marine biofouling process, which facilitates the further settlement of macrofoulers. Anti-biofilm properties of a synthetic polyphenolic compound, with previously described anti-settlement activity against macrofoulers, were explored in this work. In solution this new compound was able to prevent biofilm formation and reduce a pre-formed biofilm produced by the marine bacterium, Pseudoalteromonas tunicata. Then, this compound was applied to a marine coating and the formation of P. tunicata biofilms was assessed under hydrodynamic conditions to mimic the marine environment. For this purpose, polyurethane (PU)-based coating formulations containing 1 and 2 wt.% of the compound were prepared based on a prior developed methodology. The most effective formulation in reducing the biofilm cell number, biovolume, and thickness was the PU-based coating containing an aziridine-based crosslinker and 2 wt.% of the compound. To assess the marine ecotoxicity impact of this compound, its potential to disrupt endocrine processes was evaluated through the modulation of two nuclear receptors (NRs), peroxisome proliferator-activated receptor γ (PPARγ), and pregnane X receptor (PXR). Transcriptional activation of the selected NRs upon exposure to the polyphenolic compound (10 µM) was not observed, thus highlighting the eco-friendliness towards the addressed NRs of this new dual-acting anti-macro- and anti-microfouling agent towards the addressed NRs.


Assuntos
Incrustação Biológica , Desinfetantes , Biofilmes , Incrustação Biológica/prevenção & controle
11.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430768

RESUMO

Resistance to antibiotics is an emerging problem worldwide, which leads to an increase in morbidity and mortality rates. Several mechanisms are attributed to bacterial resistance, overexpression of efflux pumps being one of the most prominent. As an attempt to develop new effective antimicrobial drugs, which could be able to act against resistant bacterial strains and considering the antimicrobial potential of flavonoids and triazolyl flavonoid derivatives, in particular chalcones, a small library of chalcone derivatives was synthesized and evaluated for its potential to act as antimicrobials and/or adjuvants in combination with antibiotics towards resistant bacteria. Although only compound 7 was able to act as antibacterial, compounds 1, 2, 4, 5, 7, and 9 revealed to be able to potentiate the activity of antibiotics in resistant bacteria. Moreover, five compounds (3, 5-8) demonstrated to be effective inhibitors of efflux pumps in Salmonella enterica serovar Typhimurium SL1344, and four compounds (1, 3, 7, and 10) showed higher ability than reserpine to inhibit biofilm formation of resistant Staphylococcus aureus 272123. Together, our results showed the potential of these compounds regarding reversion of bacterial resistance.


Assuntos
Anti-Infecciosos , Chalcona , Chalconas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Chalcona/farmacologia , Chalconas/farmacologia , Triazóis/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Salmonella typhimurium , Resistência a Múltiplos Medicamentos
12.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430942

RESUMO

The overexpression of efflux pumps is one of the strategies used by bacteria to resist antibiotics and could be targeted to circumvent the antibiotic crisis. In this work, a series of trimethoxybenzoic acid derivatives previously described as antifouling compounds was explored for potential antimicrobial activity and efflux pump (EP) inhibition. First, docking studies on the acridine resistance proteins A and B coupled to the outer membrane channel TolC (AcrAB-TolC) efflux system and a homology model of the quinolone resistance protein NorA EP were performed on 11 potential bioactive trimethoxybenzoic acid and gallic acid derivatives. The synthesis of one new trimethoxybenzoic acid derivative (derivative 13) was accomplished. To investigate the potential of this series of 11 derivatives as antimicrobial agents, and in reverting drug resistance, the minimum inhibitory concentration was determined on several strains (bacteria and fungi), and synergy with antibiotics and EP inhibition were investigated. Derivative 10 showed antibacterial activity against the studied strains, derivatives 5 and 6 showed the ability to inhibit EPs in the acrA gene inactivated mutant Salmonella enterica serovar Typhimurium SL1344, and 6 also inhibited EPs in Staphylococcus aureus 272123. Structure-activity relationships highlighted trimethoxybenzoic acid as important for EP inhibitory activity. Although further studies are necessary, these results show the potential of simple trimethoxybenzoic acid derivatives as a source of feasible EP inhibitors.


Assuntos
Proteínas de Bactérias , Ácido Gálico , Ácido Gálico/farmacologia , Ácido Gálico/metabolismo , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Staphylococcus aureus/metabolismo
13.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014486

RESUMO

Antifouling (AF) coatings containing booster biocides are used worldwide as one of the most cost-effective ways to prevent the attachment of marine organisms to submerged structures. Nevertheless, many of the commercial biocides, such as Econea® (tralopyril), are toxic in marine environments. For that reason, it is of extreme importance that new efficient AF compounds that do not cause any harm to non-target organisms and humans are designed. In this study, we measured the half-maximal inhibitory concentration (IC50) of a promising nature-inspired AF compound, a triazolyl glycosylated chalcone (compound 1), in an immortalized human retinal pigment epithelial cell line (hTERT-RPE-1) and compared the results with the commercial biocide Econea®. We also investigated the effects of these biocides on the cellular lipidome following an acute (24 h) exposure using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS). Our results showed that compound 1 did not affect viability in hTERT-RPE-1 cells at low concentrations (1 µM), in contrast to Econea®, which caused a 40% reduction in cell viability. In total, 71 lipids were found to be regulated upon exposure to 10 µM of both compounds. Interestingly, both compounds induced changes in lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress, but often in opposing directions. In general, Econea® exposure was associated with an increase in lipid concentrations, while compound 1 exposure resulted in lipid depletion. Our study showed that exposure to human cells at sublethal Econea® concentrations results in the modulation of several lipids that are linked to cell death and survival.


Assuntos
Chalcona , Chalconas , Desinfetantes , Poluentes Químicos da Água , Chalcona/análise , Chalcona/farmacologia , Chalconas/análise , Desinfetantes/toxicidade , Humanos , Lipidômica , Lipídeos , Pirróis , Poluentes Químicos da Água/química
14.
Biomacromolecules ; 22(2): 399-409, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432805

RESUMO

Sulfated phenolic polymers have extensively been investigated as anticoagulant agents in view of their higher bioavailability and resistance to degradation compared to heparins, allowing for increased half-lives. In this frame, we report herein the preparation of sulfated derivatives of tyrosol, one of the most representative phenolic constituents of extra virgin olive oil, by different approaches. Mild sulfation of OligoTyr, a mixture of tyrosol oligomers, that has been reported to possess antioxidant properties and osteogenic activity, afforded OligoTyrS I in good yields. Elemental analysis, NMR, and MALDI-MS investigation provided evidence for an almost complete sulfation at the OH on the phenylethyl chain, leaving the phenolic OH free. Peroxidase/H2O2 oxidation of tyrosol sulfated at the alcoholic group (TyrS) also provided sulfated tyrosol oligomers (OligoTyrS II) that showed on structural analysis highly varied structural features arising likely from the addition of oxygen, derived from water or hydrogen peroxide, to the intermediate quinone methides and substantial involvement of the phenolic OH group in the oligomerization. In line with these characteristics, OligoTyrS I proved to be more active than OligoTyrS II as antioxidant in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays and as anticoagulant in the classical clotting times, mainly in prolonging the activated partial thromboplastin time (APTT). After intraperitoneal administration in mice, OligoTyrS I was also able to significantly decrease the weight of an induced thrombus. Data from chromogenic coagulation assays showed that the anticoagulant effect of OligoTyrS I was not dependent on antithrombin or factor Xa and thrombin direct inhibition. These results clearly highlight how some structural facets of even closely related phenol polymers may be critical in dictating the anticoagulant activity, providing the key for the rationale design of active synthetic nonsaccharidic anticoagulant agents alternative to heparin.


Assuntos
Anticoagulantes , Sulfatos , Animais , Heparina , Peróxido de Hidrogênio , Camundongos , Tempo de Tromboplastina Parcial , Álcool Feniletílico/análogos & derivados
15.
J Med Primatol ; 50(4): 207-211, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34043241

RESUMO

BACKGROUND: This study evaluated the cardiopulmonary effects and anaesthetic depth induced by a propofol infusion rate of 0.8 mg/kg/min in monkeys (Sapajus apella). MATERIALS AND METHODS: Five capuchin monkeys received dextroketamine-midazolam intramuscularly. After a maximum duration of 5 min, the values of the physiological parameters were recorded, and a venous catheter was placed. After recovery from chemical restraint, the animals were anaesthetized with propofol intravenously, which was maintained for 1 h. Physiological parameters, anaesthetic depth, the time and quality of anaesthetic recovery were evaluated. RESULTS: Heart and respiratory rates, systolic blood pressure and rectal temperature during propofol infusion were lower than those during anaesthesia induction with dextroketamine-midazolam. Unconsciousness, muscle relaxation and lack of response to tail clamping were observed during propofol infusion. No animals showed excitement or vocalization during anaesthetic recovery. CONCLUSION: Propofol infusion rate of 0.8 mg/kg/min promoted surgical general anaesthesia, with transient hypotension, which showed excellent anaesthetic recovery.


Assuntos
Propofol , Anestesia Geral , Anestésicos Intravenosos/farmacologia , Animais , Midazolam/farmacologia , Propofol/farmacologia , Sapajus apella
16.
Mar Drugs ; 19(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34940681

RESUMO

Marine biofouling is a natural process that represents major economic, environmental, and health concerns. Some booster biocides have been used in biofouling control, however, they were found to accumulate in environmental compartments, showing negative effects on marine organisms. Therefore, it is urgent to develop new eco-friendly alternatives. Phenyl ketones, such as benzophenones and acetophenones, have been described as modulators of several biological activities, including antifouling activity (AF). In this work, acetophenones were combined with other chemical substrates through a 1,2,3-triazole ring, a strategy commonly used in Medicinal Chemistry. In our approach, a library of 14 new acetophenone-triazole hybrids was obtained through the copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction. All of the synthesized compounds were evaluated against the settlement of a representative macrofouling species, Mytilus galloprovincialis, as well as on biofilm-forming marine microorganisms, including bacteria and fungi. The growth of the microalgae Navicula sp. was also evaluated after exposure to the most promising compounds. While compounds 6a, 7a, and 9a caused significant inhibition of the settlement of mussel larvae, compounds 3b, 4b, and 7b were able to inhibit Roseobacter litoralis bacterial biofilm growth. Interestingly, acetophenone 7a displayed activity against both mussel larvae and the microalgae Navicula sp., suggesting a complementary action of this compound against macro- and microfouling species. The most potent compounds (6a, 7a, and 9a) also showed to be less toxic to the non-target species Artemia salina than the biocide Econea®. Regarding both AF potency and ecotoxicity activity evaluation, acetophenones 7a and 9a were put forward in this work as promising eco-friendly AF agents.


Assuntos
Acetofenonas/farmacologia , Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Triazóis/farmacologia , Acetofenonas/química , Animais , Organismos Aquáticos , Biofilmes/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Desinfetantes/química , Larva/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/química
17.
Mar Drugs ; 19(11)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34822509

RESUMO

Biofouling, which occurs when certain marine species attach and accumulate in artificial submerged structures, represents a serious economic and environmental issue worldwide. The discovery of new non-toxic and eco-friendly antifouling systems to control or prevent biofouling is, therefore, a practical and urgent need. In this work, the antifouling activity of a series of 24 xanthones, with chemical similarities to natural products, was exploited. Nine (1, 2, 4, 6, 8, 16, 19, 21, and 23) of the tested xanthones presented highly significant anti-settlement responses at 50 µM against the settlement of mussel Mytilus galloprovincialis larvae and low toxicity to this macrofouling species. Xanthones 21 and 23 emerged as the most effective larval settlement inhibitors (EC50 = 7.28 and 3.57 µM, respectively). Additionally, xanthone 23 exhibited a therapeutic ratio (LC50/EC50) > 15, as required by the US Navy program attesting its suitability as natural antifouling agents. From the nine tested xanthones, none of the compounds were found to significantly inhibit the growth of the marine biofilm-forming bacterial strains tested. Xanthones 4, 6, 8, 16, 19, 21, and 23 were found to be non-toxic to the marine non-target species Artemia salina (<10% mortality at 50 µM). Insights on the antifouling mode of action of the hit xanthones 21 and 23 suggest that these two compounds affected similar molecular targets and cellular processes in mussel larvae, including that related to mussel adhesion capacity. This work exposes for the first time the relevance of C-1 aminated xanthones with a 3,4-dioxygenated pattern of substitution as new non-toxic products to prevent marine biofouling.


Assuntos
Incrustação Biológica/prevenção & controle , Xantonas/farmacologia , Animais , Organismos Aquáticos , Biofilmes/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Larva/efeitos dos fármacos , Xantonas/química
18.
Ecotoxicol Environ Saf ; 228: 112970, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34775347

RESUMO

The accumulation of marine biofouling on ship hulls causes material damage, the spread of invasive species, and, indirectly, an increase in full consumption and subsequent pollutant gas emissions. Most efficient antifouling (AF) strategies rely on the conventional release of persistent, bioaccumulative, and toxic biocides incorporated in marine coatings. A simple oxygenated xanthone, 3,4-dihydroxyxanthone (1), was previously reported as a promising AF agent toward the settlement of Mytilus galloprovincialis larvae, with a therapeutic ratio higher than the commercial biocide Econea®. In this work, a structure-AF activity relationship study, an evaluation of environmental fate, and an AF efficiency in marine coatings were performed with compound 1. Hydroxy or methoxy groups at 3 and 4 positions in compound 1 favored AF activity, and groups with higher steric hindrances were detrimental. Compound 1 demonstrated low water-solubility and a short half-life in natural seawater, contrary to Econea®. In silico environmental fate predictions showed that compound 1 does not bioaccumulate in organism tissues, in contrast to other current emerging biocides, has a moderate affinity for sediments and slow migrates to ground water. No toxicity was observed against Vibrio fischeri and Phaeodactylum tricornutum. Polyurethane-based marine coatings containing compound 1 prepared through an innovative non-release-strategy were as efficient as those containing Econea® with low releases to water after 45 days. This proof-of-concept helped to establish compound 1 as a promising eco-friendly AF agent.

19.
Molecules ; 26(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063013

RESUMO

Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.


Assuntos
Antineoplásicos/uso terapêutico , Organismos Aquáticos/química , Glioma/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Glioma/patologia , Humanos , Nanotecnologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia
20.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011463

RESUMO

As a result of the biological activities of natural flavonoids, several synthetic strategies aiming to obtain analogues with improved potency and/or pharmacokinetic profile have been developed. Since the triazole ring has been associated with several biological activities and metabolic stability, hybridization with a 1,2,3-triazole ring has been increasingly reported over the last years. The feasible synthesis through copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) has allowed the accomplishment of several hybrids. Since 2017, almost 700 flavonoid hybrids conjugated with 1,2,3-triazole, including chalcones, flavones, flavanones and flavonols, among others, with antitumor, antimicrobial, antidiabetic, neuroprotective, anti-inflammatory, antioxidant, and antifouling activity have been reported. This review compiles the biological activities recently described for these hybrids, highlighting the mechanism of action and structure-activity relationship (SAR) studies.


Assuntos
Química Click , Flavonoides/química , Flavonoides/farmacologia , Triazóis/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Chalcona/química , Técnicas de Química Sintética , Química Click/métodos , Reação de Cicloadição , Dimerização , Relação Dose-Resposta a Droga , Flavonoides/síntese química , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA