Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 795: 148909, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328934

RESUMO

Soils are habitat to a variety of flora and fauna in a linked ecosystem which provides essential ecosystem services. In soil, metals can accumulate at high concentrations, because of anthropogenic activities, leading to toxic effects, threatening the ecosystem and the services it provides. In most real-world contamination scenarios, metals occur as complex mixtures which can interact and produce different toxicity than predicted from individual metal data. Current regulatory guidelines are based on single species responses to individual metals and ignore indirect effects inherent to the inter-linked nature of ecosystems. Also, the evaluation of anthropogenic impacts to the soil communities is usually measured through structural endpoints (e.g. abundance) disregarding functional measurements (e.g. organic matter decomposition rates), which are often seen as tightly related, and thus, similarly affected. In this study we tested three mixture ratios of five metal oxides (lead, copper, nickel, zinc, cobalt) at three dose levels (Low, Med, High) in a terrestrial model ecosystem experiment and measured structural and functional endpoints. Exposure to metal mixtures for 16 weeks did not affect the microarthropod community, but produced severe effects on soil microbial activity (PNR and DHA) reducing activity below 50% compared to control levels, in all dosed treatments. Metal contamination also significantly affected feeding activity and organic matter decomposition, but effects were not as pronounced as on microbial activity. Data suggest that, in the risk assessment of metals and their mixtures, effects on ecosystem structure and functions must be considered to provide adequate environmental protection.


Assuntos
Poluentes do Solo , Solo , Ecossistema , Metais/toxicidade , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zinco/análise
2.
J Hazard Mater ; 411: 125088, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33453664

RESUMO

The goal of this study was to incorporate community data into the effect assessment of environmental and regulatory relevant metal mixtures. In this experiment three fixed mixture ratios (Canadian soil quality guideline ratio - CSQG; Agricultural, residential and Loamy ratio - ARL; and Sudbury ratio - SUD) were tested in a natural community microcosm with 11 doses for each mixture ratio. The effect of metal mixtures on the community was measured using the community effect concentration (EC) concept which assumes that as contamination increases, the community similarity between test and control treatments decreases producing a dose response curve allowing the calculation of community effect concentrations. In regulatory mixture ratios (CSQG and ARL) community EC10s were four times higher than regulatory thresholds and current regulation might be overprotective of the microarthropod communities in some soils. For the contaminated site ratio (SUD), the field dose in the contaminated site corresponded to a community EC20 and if metal concentrations were reduced by 1TU, (from 3.1TU to 2.1TU) effects would be below a community EC10. Overall, the community EC concept was successfully applied and has the potential for inclusion in risk assessment schemes as a measure of community response.


Assuntos
Metais , Poluentes do Solo , Agricultura , Canadá , Metais/análise , Metais/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA