Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 140: 109843, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648166

RESUMO

Solid-state fermentation (SSF) presents low cost and the possibility of adding value to waste by generating products rich in enzymes. The production of enzymes by SSF and its application in bakery have been previously reported separately in the literature. However, very few studies combine both approaches to evaluate the feasibility of applying enzymes produced by SSF to bread processing. The objective of this study was to use cocoa bean shell (CBS), wheat bran (WB) and brewer's spent grain (BSG) for enzyme production by SSF, and to evaluate their addition in breads. Three breads were produced: control bread (CB), bioprocessed bread added with fermented wheat bran (WBB) and bioprocessed bread added with fermented BSG (BSGB). Feruloyl esterase highest activities were 1,730 mU/g for WB fermented for 24 h and 1,128 mU/g for BSG fermented for 72 h. Xylanase highest activities were 547.9 U/g for BSG fermented for 48 h and 868.1 U/g for WB fermented for 72 h. CBS showed the lowest enzymatic activities. Bioprocessing breads with fermented WB and BSG led to an increase in soluble ferulic acid of 159% and 198%, respectively. The combination of SSF enzyme production and bread enzymatic bioprocessing strategies proved to be an effective green option for the valorization of agro-industrial by-products and the production of breads with enhanced ferulic acid content.


Assuntos
Pão , Ácidos Cumáricos , Fibras na Dieta , Fermentação
2.
Food Chem ; 333: 127473, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659670

RESUMO

This study aimed at investigating two strategies to enhance the bioaccessibility of phenolic compounds from whole-wheat breads: enzymatic bioprocessing and addition of green coffee infusion. Although both strategies had a significant effect on increasing the contents of total soluble phenolic compounds in breads, the addition of green coffee infusion was much more relevant (19.1-fold) than enzymatic bioprocessing (1.8-fold). The phenolic compounds present as soluble forms were completely released from all breads' matrix already at the oral phase of digestion. While gastric digestion did not promote the release of insoluble phenolic compounds, intestinal conditions led to a slight release. All bread samples showed maximum phenolic compounds bioaccessibility after 4 h of gut fermentation. Upon the end of in vitro digestion and gut fermentation, the difference between the strategies was that enzymatic bioprocessing accelerated ferulic acid release, while the addition of green coffee infusion increased 10.4-fold the overall phenolic compounds bioaccessibility.


Assuntos
Pão/análise , Fermentação , Microbioma Gastrointestinal , Fenóis/metabolismo , Disponibilidade Biológica , Café/química , Ácidos Cumáricos/metabolismo , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA