Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35100566

RESUMO

Short time treatment with reduced dosages of selol-loaded PLGA nanocapsules (NcSel) combined with magnetic hyperthermia (MHT) is evaluated in aged Erhlich tumor-bearing mice. Clinical, hematological, biochemical, genotoxic and histopathological parameters are assessed during 7 d treatment with NcSel and MHT, separately or combined. The time evolution of the tumor volume is successfully modeled using the logistic mathematical model. The combined therapy comprising NcSel and MHT is able to hinder primary tumor growth and a case of complete tumor remission is recorded. Moreover, no metastasis was diagnosed and the adverse effects are negligible. NcSel plus MHT may represent an effective and safe alternative to cancer control in aged patients. Future clinical trials are encouraged.


Assuntos
Neoplasias da Mama/terapia , Hipertermia Induzida , Nanopartículas de Magnetita/uso terapêutico , Nanocápsulas/uso terapêutico , Compostos de Selênio/uso terapêutico , Animais , Neoplasias da Mama/patologia , Carcinoma de Ehrlich/patologia , Carcinoma de Ehrlich/terapia , Ciclo Celular/efeitos dos fármacos , Terapia Combinada , Fragmentação do DNA/efeitos dos fármacos , Feminino , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Compostos de Selênio/química , Fatores de Tempo , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 99: 92-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24189313

RESUMO

In order to assess the safety of the carbon nanotubes to human health and the environment, we investigated the potential toxicity and ability of multi-walled carbon nanotubes (NT), to induce DNA damage by employing the Allium cepa genotoxicity/mutagenicity test and the Somatic Mutation and Recombination Test (SMART) in the fruitfly, Drosophila melanogaster. The results demonstrated that NT did not significantly induce genotoxic or mutagenic effects in the Allium cepa test. All concentrations evaluated in the SMART assay showed survival rates higher than 90percent, indicating the absence of chronic toxicity for NT. Furthermore, the various treatments showed no significant increase in the NT mutation and recombination frequencies in mwh/flr(3) genotype compared to respective negative controls, demonstrating the absence of DNA damage caused by NT.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Cebolas/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade , Mutação/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Recombinação Genética/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos
3.
Discov Nano ; 18(1): 118, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733165

RESUMO

BACKGROUND: It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS: The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS: Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.

4.
Int J Nanomedicine ; 14: 3375-3388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123402

RESUMO

BACKGROUND: Magnetic nanoparticles (MNPs) have been successfully tested for several purposes in medical applications. However, knowledge concerning the effects of nanostructures on elderly organisms is remarkably scarce. PURPOSE: To fill part of this gap, this work aimed to investigate biocompatibility and bio-distribution aspects of magnetic nanoparticles coated with citrate (NpCit) in both elderly and young healthy mice. METHODS: NpCit (2.4 mg iron) was administered intraperitoneally, and its toxicity was evaluated for 28 days through clinical, biochemical, hematological, and histopathological examinations. In addition, its biodistribution was evaluated by spectrometric (inductively coupled plasma optical emission spectrometry) and histological methods. RESULTS: NpCit presented age-dependent effects, inducing very slight and temporary biochemical and hematological changes in young animals. These changes were even weaker than the effects of the aging process, especially those related to the hematological data, tumor necrosis factor alpha, and nitric oxide levels. On the other hand, NpCit showed a distinct set of results in the elderly group, sometimes reinforcing (decrease of lymphocytes and increase of monocytes) and sometimes opposing (erythrocyte parameters and cytokine levels) the aging changes. Leukocyte changes were still observed on the 28th day after treatment in the elderly group. Slight evidence of a decrease in liver and immune functions was detected in elderly mice treated or not treated with NpCit. It was noted that tissue damage or clinical changes related to aging or to the NpCit treatment were not observed. As detected for aging, the pattern of iron biodistribution was significantly different after NpCit administration: extra iron was detected until the 28th day, but in different organs of elderly (liver and kidneys) and young (spleen, liver, and lungs) mice. CONCLUSION: Taken together, the data show NpCit to be a stable and reasonably biocompatible sample, especially for young mice, and thus appropriate for biomedical applications. The data showed important differences after NpCit treatment related to the animals' age, and this emphasizes the need for further studies in older animals to appropriately extend the benefits of nanotechnology to the elderly population.


Assuntos
Envelhecimento/fisiologia , Ácido Cítrico/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas de Magnetita/química , Animais , Feminino , Ferro/química , Pulmão/efeitos dos fármacos , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Óxido Nítrico/sangue , Especificidade de Órgãos/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue
5.
Photodiagnosis Photodyn Ther ; 20: 62-70, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28838760

RESUMO

BACKGROUND: The development of nanocarriers is an important approach to increase the bioavailability of hydrophilic drugs in target cells. In this work, we evaluated the anti-tumorigenic mechanisms and efficacy of NanoALA, a novel nanoformulation of aminolevulic acid (ALA) based on poly(lactide-co-glycolide) (PLGA) nanocapsules designed for anticancer photodynamic therapy (PDT). METHODS: For this purpose, physicochemical characterization, prodrug incorporation kinetics, biocompatibility and photocytotoxicity tests, analysis of the cell death type and mitochondrial function, measurement of the intracellular reactive oxygen species production and DNA fragmentation were performed in murine mammary carcinoma (4T1) cells. RESULTS: NanoALA formulation, stable over a period of 90days following synthesis, presented hydrodynamic diameter of 220±8.7nm, zeta potential of -30.6mV and low value of polydispersity index (0.28). The biological assays indicated that the nanostructured product promotes greater ALA uptake by 4T1 cells and consequently more cytotoxicity in the PDT process. For the first time in the scientific literature, there is a therapeutic efficacy report of approximately 80%, after only 1h of incubation with 100µgmL-1 prodrug (0.6mM ALA equivalent). The mitochondria are probably the initial target of treatment, culminating in energy metabolism disorders and cell death by apoptosis. CONCLUSIONS: NanoALA emerges as a promising strategy for anticancer PDT. Besides being effective against a highly aggressive tumor cell line, the treatment may be economically advantageous because it allows a reduction in the dose and frequency of application compared to free ALA.


Assuntos
Ácido Aminolevulínico/administração & dosagem , Nanocápsulas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Ácido Láctico , Potencial da Membrana Mitocondrial , Camundongos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA