Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(1): e1009272, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497423

RESUMO

Trypanosoma cruzi alternates between replicative and nonreplicative life forms, accompanied by a shift in global transcription levels and by changes in the nuclear architecture, the chromatin proteome and histone posttranslational modifications. To gain further insights into the epigenetic regulation that accompanies life form changes, we performed genome-wide high-resolution nucleosome mapping using two T. cruzi life forms (epimastigotes and cellular trypomastigotes). By combining a powerful pipeline that allowed us to faithfully compare nucleosome positioning and occupancy, more than 125 thousand nucleosomes were mapped, and approximately 20% of them differed between replicative and nonreplicative forms. The nonreplicative forms have less dynamic nucleosomes, possibly reflecting their lower global transcription levels and DNA replication arrest. However, dynamic nucleosomes are enriched at nonreplicative regulatory transcription initiation regions and at multigenic family members, which are associated with infective-stage and virulence factors. Strikingly, dynamic nucleosome regions are associated with GO terms related to nuclear division, translation, gene regulation and metabolism and, notably, associated with transcripts with different expression levels among life forms. Finally, the nucleosome landscape reflects the steady-state transcription expression: more abundant genes have a more deeply nucleosome-depleted region at putative 5' splice sites, likely associated with trans-splicing efficiency. Taken together, our results indicate that chromatin architecture, defined primarily by nucleosome positioning and occupancy, reflects the phenotypic differences found among T. cruzi life forms despite the lack of a canonical transcriptional control context.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Nucleossomos/genética , Trypanosoma cruzi/genética , Montagem e Desmontagem da Cromatina , Replicação do DNA , Trypanosoma cruzi/citologia
2.
J Eukaryot Microbiol ; 66(3): 514-518, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30076751

RESUMO

Here, we investigated the features of replication in Trypanosoma cruzi epimastigotes based on fork speed progression, which is influenced by distinct features such as DNA polymerase rate, susceptibility to DNA damage and repair, secondary structures, transcription and chromatin state. Although T. cruzi exhibits a mean fork speed (2.05 ± 0.10 kb/min) very similar to other trypanosomatids, we found that the majority of DNA molecules replicated more slowly, with a frequency distribution approximately 1 kb/min. This frequency distribution analysis provides more information about the replication profile of this organism.


Assuntos
Replicação do DNA , DNA de Protozoário/genética , Trypanosoma cruzi/genética , Imagem Individual de Molécula
3.
J Biol Chem ; 289(24): 16711-26, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24764300

RESUMO

Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25-100 µm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclina D2/farmacologia , Oligopeptídeos/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Motivos de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular , Ciclina D2/química , Glioblastoma/tratamento farmacológico , Células HeLa , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Células MCF-7 , Masculino , Maleimidas/farmacologia , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Quinolinas/farmacologia , Ratos , Ratos Wistar
4.
Sci Rep ; 9(1): 2888, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814563

RESUMO

DNA polymerase theta (Polθ), a member of the DNA polymerase family A, exhibits a polymerase C-terminal domain, a central domain, and an N-terminal helicase domain. Polθ plays important roles in DNA repair via its polymerase domain, regulating genome integrity. In addition, in mammals, Polθ modulates origin firing timing and MCM helicase recruitment to chromatin. In contrast, as a model eukaryote, Trypanosoma cruzi exhibits two individual putative orthologs of Polθ in different genomic loci; one ortholog is homologous to the Polθ C-terminal polymerase domain, and the other is homologous to the Polθ helicase domain, called Polθ-polymerase and Polθ-helicase, respectively. A pull-down assay using the T. cruzi component of the prereplication complex Orc1/Cdc6 as bait captured Polθ-helicase from the nuclear extract. Orc1/Cdc6 and Polθ-helicase directly interacted, and Polθ-helicase presented DNA unwinding and ATPase activities. A T. cruzi strain overexpressing the Polθ-helicase domain exhibited a significantly decreased amount of DNA-bound MCM7 and impaired replication origin firing. Taken together, these data suggest that Polθ-helicase modulates DNA replication by directly interacting with Orc1/Cdc6, which reduces the binding of MCM7 to DNA and thereby impairs the firing of replication origins.


Assuntos
Cromatina/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Cromatina/genética , DNA Helicases/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Complexo de Reconhecimento de Origem/genética , Proteínas de Protozoários/genética , Origem de Replicação , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , DNA Polimerase teta
5.
Biomolecules ; 9(4)2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995799

RESUMO

Intracellular peptides are produced by proteasomes following degradation of nuclear, cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases generating a larger pool of peptides within cells. Thousands of intracellular peptides have been sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels of intracellular peptides undergo changes in human diseases and also when cells are stimulated, corroborating their biological function. However, only a few intracellular peptides have been pharmacologically characterized and their biological significance and mechanism of action remains elusive. Here, some historical and general aspects on intracellular peptides' biology and pharmacology are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested as biological functional molecules, and are also promising prototypes for new drug development.


Assuntos
Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oligopeptídeos/farmacologia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Oligopeptídeos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Proteomics ; 151: 74-82, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27523479

RESUMO

Hundreds of intracellular peptides that are neither antigens nor neuropeptides are present in mammalian cells and tissues. These peptides correspond to fragments of cytosolic, nuclear or mitochondrial proteins. Proteasome inhibition affects the levels of the intracellular peptides in human cell lines. Here, the effect of immuneproteasome expression on the intracellular peptide profile was evaluated, and its functional significance was investigated. The expression of the immuneproteasome in HeLa cells was induced by interferon gamma treatment, and the relative concentrations of the intracellular peptides were compared to those of the control cells using isotope labeling and electron spray mass spectrometry. One of the peptides identified, VGSELIQKY (EL28), corresponds to amino acids 251-259 of the human 19S ATPase regulatory subunit 4. This peptide was increased in the extracts of HeLa cells that had been treated with interferon gamma compared to those of control cells. In vitro, EL28 increased the chymotrypsin, trypsin and caspase-like proteasome activities. In vivo, when covalently linked to a cell-penetrating peptide, EL28 potentiated the ability of interferon gamma to stimulate the expression of the immuneproteasome ß5i subunit and to increase the proliferation of CD8+ T-cells. The EL28/cell-penetrating peptide construct also improved and positively modulated the secondary IgG anti-bovine serum albumin immune responsiveness elicited in high antibody-responder mice. Together, these results suggest that EL28 is a functional intracellular peptide that can potentiate interferon gamma activity. BIOLOGICAL SIGNIFICANCE: The functional identification of EL28 advances our understanding regarding the bioactive peptides generated by limited proteolysis within cells.


Assuntos
Adenosina Trifosfatases/química , Interferon gama/farmacologia , Peptídeos/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/química , Adenosina Trifosfatases/imunologia , Sequência de Aminoácidos , Células HeLa , Humanos , Espectrometria de Massas , Peptídeos/análise , Peptídeos/fisiologia , Complexo de Endopeptidases do Proteassoma/imunologia , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA