RESUMO
Chimeric antigen receptor (CAR) T cells mediate anti-tumour effects in a small subset of patients with cancer1-3, but dysfunction due to T cell exhaustion is an important barrier to progress4-6. To investigate the biology of exhaustion in human T cells expressing CAR receptors, we used a model system with a tonically signaling CAR, which induces hallmark features of exhaustion6. Exhaustion was associated with a profound defect in the production of IL-2, along with increased chromatin accessibility of AP-1 transcription factor motifs and overexpression of the bZIP and IRF transcription factors that have been implicated in mediating dysfunction in exhausted T cells7-10. Here we show that CAR T cells engineered to overexpress the canonical AP-1 factor c-Jun have enhanced expansion potential, increased functional capacity, diminished terminal differentiation and improved anti-tumour potency in five different mouse tumour models in vivo. We conclude that a functional deficiency in c-Jun mediates dysfunction in exhausted human T cells, and that engineering CAR T cells to overexpress c-Jun renders them resistant to exhaustion, thereby addressing a major barrier to progress for this emerging class of therapeutic agents.
Assuntos
Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Receptores de Antígenos de Linfócitos T/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/imunologia , Transcrição GênicaRESUMO
The elderly have reduced humoral immunity, as manifested by increased susceptibility to infections and impaired vaccine responses. To investigate the effects of aging on B-cell receptor (BCR) repertoire evolution during an immunological challenge, we used a phylogenetic distance metric to analyze Ig heavy-chain transcript sequences in both young and elderly individuals before and after influenza vaccination. We determined that BCR repertoires become increasingly specialized over a span of decades, but less plastic. In 50% of the elderly individuals, a large space in the repertoire was occupied by a small number of recall lineages that did not decline during vaccine response and contained hypermutated IgD+ B cells. Relative to their younger counterparts, older subjects demonstrated a contracted naive repertoire and diminished intralineage diversification, signifying a reduced substrate for mounting novel responses and decreased fine-tuning of BCR specificities by somatic hypermutation. Furthermore, a larger proportion of the repertoire exhibited premature stop codons in some elderly subjects, indicating that aging may negatively affect the ability of B cells to discriminate between functional and nonfunctional receptors. Finally, we observed a decreased incidence of radical mutations compared with conservative mutations in elderly subjects' vaccine responses, which suggests that accumulating original antigenic sin may be limiting the accessible space for paratope evolution. Our findings shed light on the complex interplay of environmental and gerontological factors affecting immune senescence, and provide direct molecular characterization of the effects of senescence on the immune repertoire.
Assuntos
Envelhecimento/imunologia , Anticorpos Antivirais/genética , Linfócitos B/imunologia , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Genes de Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos B/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/biossíntese , Linhagem da Célula , Doença Crônica , Códon sem Sentido , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Humanos , Imunoglobulina D/genética , Imunoglobulina D/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Vacinação , Adulto JovemRESUMO
BACKGROUND: Metagenomic next-generation sequencing (mNGS) has enabled the rapid, unbiased detection and identification of microbes without pathogen-specific reagents, culturing, or a priori knowledge of the microbial landscape. mNGS data analysis requires a series of computationally intensive processing steps to accurately determine the microbial composition of a sample. Existing mNGS data analysis tools typically require bioinformatics expertise and access to local server-class hardware resources. For many research laboratories, this presents an obstacle, especially in resource-limited environments. FINDINGS: We present IDseq, an open source cloud-based metagenomics pipeline and service for global pathogen detection and monitoring (https://idseq.net). The IDseq Portal accepts raw mNGS data, performs host and quality filtration steps, then executes an assembly-based alignment pipeline, which results in the assignment of reads and contigs to taxonomic categories. The taxonomic relative abundances are reported and visualized in an easy-to-use web application to facilitate data interpretation and hypothesis generation. Furthermore, IDseq supports environmental background model generation and automatic internal spike-in control recognition, providing statistics that are critical for data interpretation. IDseq was designed with the specific intent of detecting novel pathogens. Here, we benchmark novel virus detection capability using both synthetically evolved viral sequences and real-world samples, including IDseq analysis of a nasopharyngeal swab sample acquired and processed locally in Cambodia from a tourist from Wuhan, China, infected with the recently emergent SARS-CoV-2. CONCLUSION: The IDseq Portal reduces the barrier to entry for mNGS data analysis and enables bench scientists, clinicians, and bioinformaticians to gain insight from mNGS datasets for both known and novel pathogens.
Assuntos
Betacoronavirus/genética , Computação em Nuvem , Infecções por Coronavirus/virologia , Metagenoma , Metagenômica/métodos , Pneumonia Viral/virologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/diagnóstico , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Pandemias , Pneumonia Viral/diagnóstico , SARS-CoV-2 , SoftwareRESUMO
Systemic sclerosis with pulmonary arterial hypertension (SSc-PAH) is a debilitating and frequently lethal disease of unknown cause lacking effective treatment options. Lymphocyte anomalies and autoantibodies observed in systemic sclerosis have suggested an autoimmune character. We study the clonal structure of the B cell repertoire in SSc-PAH using immunoglobulin heavy chain (IGH) sequencing before and after B cell depletion. We found SSc-PAH to be associated with anomalies in B cell development, namely, altered VDJ rearrangement frequencies (reduced IGHV2-5 segment usage) and an increased somatic mutation-fixation probability in expanded B cell lineages. SSc-PAH was also characterized by anomalies in B cell homeostasis, namely, an expanded immunoglobulin D-positive (IgD+) proportion with reduced mutation loads and an expanded proportion of highly antibody-secreting cells. Disease signatures pertaining to IGHV2-5 segment usage, IgD proportions, and mutation loads were temporarily reversed after B cell depletion. Analyzing the time course of B cell depletion, we find that the kinetics of naïve replenishment are predictable from baseline measurements alone, that release of plasma cells into the periphery can precede naïve replenishment, and that modes of B cell receptor diversity are highly elastic. Our findings reveal humoral immune signatures of SSc-PAH and uncover determinism in the effects of B cell depletion on the antibody repertoire.
Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Hipertensão Pulmonar/imunologia , Fatores Imunológicos/uso terapêutico , Depleção Linfocítica , Escleroderma Sistêmico/imunologia , Idoso , Doenças Autoimunes/tratamento farmacológico , Método Duplo-Cego , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Reconstituição Imune/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Estudos Longitudinais , Pessoa de Meia-Idade , Placebos , Plasmócitos/imunologia , Rituximab/uso terapêutico , Escleroderma Sistêmico/tratamento farmacológico , Análise de Sequência de DNA , Fatores de Tempo , Recombinação V(D)J/imunologiaRESUMO
Single-cell sequencing is emerging as an important tool for studies of genomic heterogeneity. Whole genome amplification (WGA) is a key step in single-cell sequencing workflows and a multitude of methods have been introduced. Here, we compare three state-of-the-art methods on both bulk and single-cell samples of E. coli DNA: Multiple Displacement Amplification (MDA), Multiple Annealing and Looping Based Amplification Cycles (MALBAC), and the PicoPLEX single-cell WGA kit (NEB-WGA). We considered the effects of reaction gain on coverage uniformity, error rates and the level of background contamination. We compared the suitability of the different WGA methods for the detection of copy-number variations, for the detection of single-nucleotide polymorphisms and for de-novo genome assembly. No single method performed best across all criteria and significant differences in characteristics were observed; the choice of which amplifier to use will depend strongly on the details of the type of question being asked in any given experiment.