Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 202: 110918, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800253

RESUMO

This work evaluates different generations of transgenic (cp4-EPSPS gene) and non-transgenic soybean plants through proteomics and metabolomics. For proteomics purpose, 24 differentially abundant protein spots were found through 2-D DIGE, being 4 belonging to transgenic plants. From this total, 19 were successfully identified, storage proteins as predominant class. Some identified proteins are involved in growing and cell division, and stress response, such as LEA and dehydrin. For metabolomics, 17 compounds were putatively annotated, mainly belonging to the secondary metabolism, such as flavonoids. From these analyzes, all generations and varieties of the soybean are prone to be differentiate by PLS-DA. According to our results, transgenic plants appear to be more stable than non-transgenic ones. In addition, the omics-based approaches allowed access some relations between those differential spot proteins and metabolites, mainly those storage proteins and flavonoid.


Assuntos
Glycine max/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Metabolômica , Plantas Geneticamente Modificadas/metabolismo , Proteômica , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA