Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(11): 1612-1628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34420435

RESUMO

Wheat flour is the main ingredient used in the preparation of bread. Factors such as low gluten content and the addition of nontraditional ingredients in baking affect the quality of wheat flour and may limit its use in baking. With the increasing trend of "clean label" products, it may be interesting to develop and use physical processes to improve the quality of wheat flour and avoid the use of chemical additives. High hydrostatic pressure, non-thermal plasma, ultrasound, ozonation, ultraviolet light, and pulsed light treatments are non-thermal emerging technologies (NTETs) that have been studied for this purpose. They were originally developed to inactivate microorganisms and enzymes in foods. Additionally, these technologies can be used at low temperatures to modify the most important component of wheat flour, i.e., gluten and its fractions, which are responsible for the rheological properties of wheat flour dough. Thus, this review focuses on the effects of these NTETs by considering the following factors: (1) the technological properties of gluten, (2) gluten-starch interactions, (3) possible effects of NTETs on minor components of flours, and (4) the quality of wheat flour and the resulting final products.


Assuntos
Farinha , Triticum , Triticum/química , Glutens , Pão
2.
Food Chem ; 447: 138887, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492299

RESUMO

The impact of different pressure levels in the HHP-assisted hydrolysis by Alcalase of quinoa proteins on the catalytic efficiency, peptide release, phenolic compounds content, and biological activities was investigated. The protein profile (SDS-PAGE) showed a more extensive peptide breakdown for the HHP-assisted proteolysis at 300-400 MPa, which was confirmed by the higher extent of hydrolysis and peptide concentration. Quinoa protein hydrolysates (QPH) produced at 200 and 300 MPa exhibited higher total phenolic contents and antioxidant activities (methanol-acetone and aqueous extracts) when compared to the non-hydrolyzed (QPI) and non-pressurized hydrolyzed samples. Kaempferol dirhamnosyl-galactopyranoside was the prevalent phenolic compound in those samples, increasing total flavonoids by 1.8-fold over QPI. The QPH produced at 300 MPa inhibited ACE more effectively, exhibiting the greatest anti-hypertensive potential, along with the presence of several ACE-inhibitory peptides. The peptide sequences GSHWPFGGK, FSIAWPR, and PWLNFK presented the highest Peptide Ranker scores and were predicted to have ACE inhibitory, DPP-IV inhibitory, and antioxidant activities. Mild pressure levels were effective in producing QPH with enhanced functionality due to the effects of bioactive soluble phenolics and low molecular weight peptides.


Assuntos
Antioxidantes , Chenopodium quinoa , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Hidrolisados de Proteína/química , Inibidores da Enzima Conversora de Angiotensina/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA