RESUMO
OBJECTIVES: To ascertain whether systemic administration of mitochondria-rich fraction isolated from mesenchymal stromal cells would reduce lung, kidney, and liver injury in experimental sepsis. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Sixty C57BL/6 male mice. INTERVENTIONS: Sepsis was induced by cecal ligation and puncture; sham-operated animals were used as control. At 24 hours after surgery, cecal ligation and puncture and Sham animals were further randomized to receive saline or mitochondria-rich fraction isolated from mesenchymal stromal cells (3 × 106) IV. At 48 hours, survival, peritoneal bacterial load, lung, kidney, and liver injury were analyzed. Furthermore, the effects of mitochondria on oxygen consumption rate and reactive oxygen species production of lung epithelial and endothelial cells were evaluated in vitro. MEASUREMENTS AND MAIN RESULTS: In vitro exposure of lung epithelial and endothelial cells from cecal ligation and puncture animals to mitochondria-rich fraction isolated from mesenchymal stromal cells restored oxygen consumption rate and reduced total reactive oxygen species production. Infusion of exogenous mitochondria-rich fraction from mesenchymal stromal cells (mitotherapy) reduced peritoneal bacterial load, improved lung mechanics and histology, and decreased the expression of interleukin-1ß, keratinocyte chemoattractant, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in lung tissue, while increasing keratinocyte growth factor expression and survival rate in cecal ligation and puncture-induced sepsis. Mitotherapy also reduced kidney and liver injury, plasma creatinine levels, and messenger RNA expressions of interleukin-18 in kidney, interleukin-6, indoleamine 2,3-dioxygenase-2, and programmed cell death protein 1 in liver, while increasing nuclear factor erythroid 2-related factor-2 and superoxide dismutase-2 in kidney and interleukin-10 in liver. CONCLUSIONS: Mitotherapy decreased lung, liver, and kidney injury and increased survival rate in cecal ligation and puncture-induced sepsis.
Assuntos
Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Sepse/complicações , Animais , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Insuficiência de Múltiplos ÓrgãosRESUMO
BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with severe social communication, interaction, and sensory processing impairments. Efforts to understand its etiology and pathophysiology are crucial for improving treatment and prevention measures. Preclinical models of ASD are essential for investigating the biological mechanisms and should present translatability potential. We aim to evaluate the consistency of the most commonly used rodent models of ASD in displaying autistic-like behavior through a systematic review and meta-analysis. METHODS: This review will focus on the most frequently used autism models, surveying studies of six genetic (Ube3a, Pten, Nlgn3, Shank3, Mecp2, and Fmr1), three chemically induced (valproic acid (VPA), lipopolysaccharide (LPS), and polyinosinic:polycytidylic acid (poly(I:C))), and one inbred model (BTBR T+ Itpr3tf/J mouse strain). Two independent reviewers will screen the records. Data extraction of behavioral outcomes and risk of bias evaluation will be performed. We will conduct a meta-analysis whenever at least five studies investigate the same model and behavioral outcome. We will also explore the heterogeneity and publication bias. Network meta-analyses are planned to compare different models. DISCUSSION: By shortening the gap between animal behavior and human endophenotypes or specific clinical symptoms, we expect to help researchers on which rodent models are adequate for research of specific behavioral manifestations of autism, which potentially require a combination of them depending on the research interest. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021226299 .
Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Humanos , Metanálise como Assunto , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Metanálise em Rede , Roedores , Revisões Sistemáticas como AssuntoRESUMO
Several studies have demonstrated the anti-inflammatory potential of mesenchymal stromal cells (MSCs) isolated from bone marrow, adipose tissue, placenta, and other sources. Nevertheless, MSCs may also induce immunosuppression when administered systemically or directly to injured environments, as shown in different preclinical disease models. MSCs express certain receptors, including toll-like receptors and the aryl-hydrocarbon receptor, that are activated by the surrounding environment, thus leading to modulation of their immunosuppressive activity. Once MSCs are activated, they can affect a wide range of immune cells (e.g., neutrophils, monocytes/macrophages, dendritic cells, natural killer cells, T and B lymphocytes), a phenomenon that has been correlated to secretion of several mediators (e.g., indolamine 2,3-dioxygenase, galectins, prostaglandin E2, nitric oxide, and damage- and pathogen-associated molecular patterns) and stimulation of certain signaling pathways (e.g., protein kinase R, signal transducer and activator of transcription-1, nuclear factor-κB). Additionally, MSC manipulation and culture conditions, as well as the number of passages, duration of cryopreservation, and O2 content available, can significantly affect the immunosuppressive properties of MSCs. This review sheds light on current knowledge regarding the mechanisms by which MSCs exert immunosuppressive effects both in vitro and in vivo, focusing on the receptors expressed by MSCs, the correlation between soluble factors secreted by MSCs and their immunosuppressive effects, and interactions between MSCs and immune cells.
Assuntos
Tolerância Imunológica , Células-Tronco Mesenquimais/imunologia , Imunidade Adaptativa , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Humanos , Imunidade Inata , Terapia de Imunossupressão/métodos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Receptores de Hidrocarboneto Arílico/imunologia , Receptores Toll-Like/imunologiaRESUMO
Asthma is a chronic inflammatory disease characterized by airway inflammation and remodeling, which can lead to progressive decline of lung function. Although mesenchymal stromal cells (MSCs) have shown beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been limited. Mounting evidence suggests that prior exposure of MSCs to specific inflammatory stimuli or environments can enhance their immunomodulatory properties. Therefore, we investigated whether stimulating MSCs with bronchoalveolar lavage fluid (BALF) or serum from asthmatic mice could potentiate their therapeutic properties in experimental asthma. In a house dust mite (HDM) extract asthma model in mice, unstimulated, asthmatic BALF-stimulated, or asthmatic serum-stimulated MSCs were administered intratracheally 24 hours after the final HDM challenge. Lung mechanics and histology; BALF protein, cellularity, and biomarker levels; and lymph-node and bone marrow cellularity were assessed. Compared with unstimulated or BALF-stimulated MSCs, serum-stimulated MSCs further reduced BALF levels of interleukin (IL)-4, IL-13, and eotaxin, total and differential cellularity in BALF, bone marrow and lymph nodes, and collagen fiber content, while increasing BALF IL-10 levels and improving lung function. Serum stimulation led to higher MSC apoptosis, expression of various mediators (transforming growth factor-ß, interferon-γ, IL-10, tumor necrosis factor-α-stimulated gene 6 protein, indoleamine 2,3-dioxygenase-1, and IL-1 receptor antagonist), and polarization of macrophages to M2 phenotype. In conclusion, asthmatic serum may be a novel strategy to potentiate therapeutic effects of MSCs in experimental asthma, leading to further reductions in both inflammation and remodeling than can be achieved with unstimulated MSCs. Stem Cells Translational Medicine 2019;8:301&312.
Assuntos
Asma/imunologia , Asma/terapia , Células-Tronco Mesenquimais/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Interleucina-10/imunologia , Interleucina-13/imunologia , Interleucina-4/imunologia , Pulmão/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
AIM: To evaluate different intratracheal flow rates on extracellular matrix content and lung mechanics in an established lung decellularization protocol. MATERIALS & METHODS: Healthy mice were used: 15 for decellularization and five to serve as controls. Fluids were instilled at 5, 10 and 20 ml/min flow rates through tracheal cannula and right ventricular cavity (0.5 ml/min) in all groups. RESULTS: The 20 ml/min rate better preserved collagen content in decellularized lungs. Elastic fiber content decreased at 5 and 10 ml/min, but not at 20 ml/min, compared with controls. Chondroitin, heparan and dermatan content was reduced after decellularization. CONCLUSION: An intratracheal flow rate of 20 ml/min was associated with lower resistance and greater preservation of collagen to that observed in ex vivo control lungs.
Assuntos
Condroitina/química , Dermatan Sulfato/química , Matriz Extracelular/química , Heparitina Sulfato/química , Pulmão/química , Animais , Feminino , Camundongos , PerfusãoRESUMO
Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in the understanding of its pathophysiology, asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodeling. Mesenchymal stromal cell (MSC)-based therapy mitigates lung inflammation in experimental allergic asthma; however, its ability to reduce airway remodeling is limited. We aimed to investigate whether pre-treatment with eicosapentaenoic acid (EPA) potentiates the therapeutic properties of MSCs in experimental allergic asthma. Seventy-two C57BL/6 mice were used. House dust mite (HDM) extract was intranasally administered to induce severe allergic asthma in mice. Unstimulated or EPA-stimulated MSCs were administered intratracheally 24 h after final HDM challenge. Lung mechanics, histology, protein levels of biomarkers, and cellularity in bronchoalveolar lavage fluid (BALF), thymus, lymph nodes, and bone marrow were analyzed. Furthermore, the effects of EPA on lipid body formation and secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-ß1 by MSCs were evaluated in vitro. EPA-stimulated MSCs, compared to unstimulated MSCs, yielded greater therapeutic effects by further reducing bronchoconstriction, alveolar collapse, total cell counts (in BALF, bone marrow, and lymph nodes), and collagen fiber content in airways, while increasing IL-10 levels in BALF and M2 macrophage counts in lungs. In conclusion, EPA potentiated MSC-based therapy in experimental allergic asthma, leading to increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-ß), modulation of macrophages toward an anti-inflammatory phenotype, and reduction in the remodeling process. Taken together, these modifications may explain the greater improvement in lung mechanics obtained. This may be a promising novel strategy to potentiate MSCs effects.
Assuntos
Asma/metabolismo , Ácido Eicosapentaenoico/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Asma/etiologia , Asma/patologia , Asma/terapia , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Feminino , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Muco/metabolismo , Timo/imunologia , Timo/metabolismoRESUMO
BACKGROUND: Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. METHODS: C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 105 human AD-MSCs, or EVs (released by 105 AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. RESULTS: In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3+CD4+ T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-ß in lung tissue, and CD3+CD4+ T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3+CD4+ T cells in the mediastinal lymph nodes. CONCLUSIONS: In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different mechanisms of action of AD-MSCs versus their EVs.
Assuntos
Asma , Vesículas Extracelulares , Pulmão , Células-Tronco Mesenquimais/imunologia , Mecânica Respiratória , Tecido Adiposo , Animais , Asma/imunologia , Asma/patologia , Asma/fisiopatologia , Asma/terapia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/transplante , Feminino , Xenoenxertos , Humanos , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Células-Tronco Mesenquimais/patologia , CamundongosRESUMO
AIMS: Heterocyclic pyrazole derivative has been described for the treatment of pain and inflammatory diseases. This study evaluated the in vivo, antinociceptive, anti-inflammatory and antipyretic effects of 1.5-diphenyl-1H-Pyrazole-3-carbohydrazide (1.5-DHP) and the in vivo or in vitro mechanism of action. MAIN METHODS: Acetic acid-induced writhing, hot-plate and formalin-induced nociception tests were used to evaluate the antinociceptive effect, while the rota-rod test was used to assess the motor activity. Croton oil-induced ear edema and carrageenan-induced peritonitis tests were used to investigate the anti-inflammatory effect of 1.5-DHP. The antipyretic effect was assessed using the LPS-induced fever model. The mechanism of action was evaluated by PGE2 and TNF-α measurement and cyclooxygenase inhibition assay. KEY FINDINGS: Oral administration (p.o.) of 1.5-DHP (1, 3, 10 mg/kg) caused a dose-related inhibition of the acetic acid-induced writhing, however the highest dose was not effective on the hot-plate and rota-rod. In the formalin-induced nociception, 1.5-DHP (10mg/kg, p.o.) inhibited only the late phase of nociception. This same dose of 1.5-DHP also reduced the croton oil-induced ear edema. 1.5-DHP (3, 10, 30 mg/kg, p.o.) produced a dose-related reduction of leukocyte migration on the carrageenan-induced peritonitis. 1.5-DHP (60 mg/kg, p.o.) reduced the fever and the increase of PGE2 concentration in the cerebrospinal fluid induced by LPS. 1.5-DHP inhibited both COXs in vitro. Finally, 1.5-DHP (10 mg/kg, p.o.) reduced the TNF-α concentration in peritoneal exudates after carrageenan injection. SIGNIFICANCE: These results indicate that 1.5-DHP produces anti-inflammatory, antinociceptive and antipyretic effects by PGE2 synthesis reduction through COX-1/COX-2 inhibition and by TNF-α synthesis/release inhibition.