Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 60(10): 5949-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458216

RESUMO

The discovery and development of new antimalarial drugs are becoming imperative because of the spread of resistance to current clinical treatments. The lack of robustly validated antimalarial targets and the difficulties with the building in of whole-cell activity in screening hits are hampering target-based approaches. However, phenotypic screens of structurally diverse molecule libraries are offering new opportunities for the identification of novel antimalarials. Several methodologies can be used to determine the whole-cell in vitro potencies of antimalarial hits. The [(3)H]hypoxanthine incorporation assay is considered the "gold standard" assay for measurement of the activity of antimalarial compounds against intraerythrocytic forms of Plasmodium falciparum However, the method has important limitations, as the assay is not amenable for high-throughput screening since it remains associated with the 96-well plate format. We have overcome this drawback by adapting the [(3)H]hypoxanthine incorporation method to a 384-well high-density format by coupling a homogeneous scintillation proximity assay (SPA) and thus eliminating the limiting filtration step. This SPA has been validated using a diverse set of 1,000 molecules, including both a representative set from the Tres Cantos Antimalarial Set (TCAMS) of compounds and molecules inactive against whole cells. The results were compared with those from the P. falciparum lactate dehydrogenase whole-cell assay, another method that is well established as a surrogate for parasite growth and is amenable for high-throughput screening. The results obtained demonstrate that the SPA-based [(3)H]hypoxanthine incorporation assay is a suitable design that is adaptable to high-throughput antimalarial drug screening and that maintains the features, robustness, and reliability of the standard filtration hypoxanthine incorporation method.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Plasmodium falciparum/crescimento & desenvolvimento , Hipoxantina/análise , Hipoxantina/metabolismo , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Reprodutibilidade dos Testes , Trítio
2.
Bioorg Med Chem Lett ; 26(16): 3938-44, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27432764

RESUMO

As part of our medicinal chemistry program's ongoing search for compounds with antimalarial activity, we prepared a series of thiazole analogs and conducted a SAR study analyzing their in vitro activities against the chloroquine-sensitive Plasmodium falciparum 3D7 strain. The results indicate that modifications of the N-aryl amide group linked to the thiazole ring are the most significant in terms of in vitro antimalarial activity, leading to compounds with high antimalarial potency and low cytotoxicity in HepG2 cell lines. Furthermore, the observed SAR implies that non-bulky, electron-withdrawing groups are preferred at ortho position on the phenyl ring, whereas small atoms such as H or F are preferred at para position. Finally, replacement of the phenyl ring by a pyridine affords a compound with similar potency, but with potentially better physicochemical properties which could constitute a new line of research for further studies.


Assuntos
Antimaláricos/síntese química , Desenho de Fármacos , Tiazóis/química , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/toxicidade
3.
Nature ; 465(7296): 305-10, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20485427

RESUMO

Malaria is a devastating infection caused by protozoa of the genus Plasmodium. Drug resistance is widespread, no new chemical class of antimalarials has been introduced into clinical practice since 1996 and there is a recent rise of parasite strains with reduced sensitivity to the newest drugs. We screened nearly 2 million compounds in GlaxoSmithKline's chemical library for inhibitors of P. falciparum, of which 13,533 were confirmed to inhibit parasite growth by at least 80% at 2 microM concentration. More than 8,000 also showed potent activity against the multidrug resistant strain Dd2. Most (82%) compounds originate from internal company projects and are new to the malaria community. Analyses using historic assay data suggest several novel mechanisms of antimalarial action, such as inhibition of protein kinases and host-pathogen interaction related targets. Chemical structures and associated data are hereby made public to encourage additional drug lead identification efforts and further research into this disease.


Assuntos
Antimaláricos/análise , Antimaláricos/farmacologia , Descoberta de Drogas , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/toxicidade , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Malária Falciparum/parasitologia , Modelos Biológicos , Filogenia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/toxicidade
4.
mSphere ; 8(5): e0015423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37565760

RESUMO

Shigella flexneri is a facultative intracellular pathogen that causes shigellosis, a human diarrheal disease characterized by the destruction of the colonic epithelium. Novel antimicrobial compounds to treat infections are urgently needed due to the proliferation of bacterial antibiotic resistance and lack of new effective antimicrobials in the market. Our approach to find compounds that block the Shigella virulence pathway has three potential advantages: (i) resistance development should be minimized due to the lack of growth selection pressure, (ii) no resistance due to environmental antibiotic exposure should be developed since the virulence pathways are not activated outside of host infection, and (iii) the normal intestinal microbiota, which do not have the targeted virulence pathways, should be unharmed. We chose to utilize two phenotypic assays, inhibition of Shigella survival in macrophages and Shigella growth inhibition (minimum inhibitory concentration), to interrogate the 1.7 M compound screening collection subset of the GlaxoSmithKline drug discovery chemical library. A number of secondary assays on the hit compounds resulting from the primary screens were conducted, which, in combination with chemical, structural, and physical property analyses, narrowed the final hit list to 44 promising compounds for further drug discovery efforts. The rapid development of antibiotic resistance is a critical problem that has the potential of returning the world to a "pre-antibiotic" type of environment, where millions of people will die from previously treatable infections. One relatively newer approach to minimize the selection pressures for the development of resistance is to target virulence pathways. This is anticipated to eliminate any resistance selection pressure in environmental exposure to virulence-targeted antibiotics and will have the added benefit of not affecting the non-virulent microbiome. This paper describes the development and application of a simple, reproducible, and sensitive assay to interrogate an extensive chemical library in high-throughput screening format for activity against the survival of Shigella flexneri 2457T-nl in THP-1 macrophages. The ability to screen very large numbers of compounds in a reasonable time frame (~1.7 M compounds in ~8 months) distinguishes this assay as a powerful tool in further exploring new compounds with intracellular effect on S. flexneri or other pathogens with similar pathways of pathogenesis. The assay utilizes a luciferase reporter which is extremely rapid, simple, relatively inexpensive, and sensitive and possesses a broad linear range. The assay also utilized THP-1 cells that resemble primary monocytes and macrophages in morphology and differentiation properties. THP-1 cells have advantages over human primary monocytes or macrophages because they are highly plastic and their homogeneous genetic background minimizes the degree of variability in the cell phenotype (1). The intracellular and virulence-targeted selectivity of our methodology, determined via secondary screening, is an enormous advantage. Our main interest focuses on hits that are targeting virulence, and the most promising compounds with adequate physicochemical and drug metabolism and pharmacokinetic (DMPK) properties will be progressed to a suitable in vivo shigellosis model to evaluate the therapeutic potential of this approach. Additionally, compounds that act via a host-directed mechanism could be a promising source for further research given that it would allow a whole new, specific, and controlled approach to the treatment of diseases caused by some pathogenic bacteria.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Shigella flexneri , Virulência/genética , Disenteria Bacilar/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Macrófagos
5.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289746

RESUMO

Background: Diarrhoea remains one of the leading causes of childhood mortality globally. Recent epidemiological studies conducted in low-middle income countries (LMICs) identified Shigella spp. as the first and second most predominant agent of dysentery and moderate diarrhoea, respectively. Antimicrobial therapy is often necessary for Shigella infections; however, we are reaching a crisis point with efficacious antimicrobials. The rapid emergence of resistance against existing antimicrobials in Shigella spp. poses a serious global health problem. Methods: Aiming to identify alternative antimicrobial chemicals with activity against antimicrobial resistant Shigella, we initiated a collaborative academia-industry drug discovery project, applying high-throughput phenotypic screening across broad chemical diversity and followed a lead compound through in vitro and in vivo characterisation. Results: We identified several known antimicrobial compound classes with antibacterial activity against Shigella. These compounds included the oral carbapenem Tebipenem, which was found to be highly potent against broadly susceptible Shigella and contemporary MDR variants for which we perform detailed pre-clinical testing. Additional in vitro screening demonstrated that Tebipenem had activity against a wide range of other non-Shigella enteric bacteria. Cognisant of the risk for the development of resistance against monotherapy, we identified synergistic behaviour of two different drug combinations incorporating Tebipenem. We found the orally bioavailable prodrug (Tebipenem pivoxil) had ideal pharmacokinetic properties for treating enteric pathogens and was effective in clearing the gut of infecting organisms when administered to Shigella-infected mice and gnotobiotic piglets. Conclusions: Our data highlight the emerging antimicrobial resistance crisis and shows that Tebipenem pivoxil (licenced for paediatric respiratory tract infections in Japan) should be accelerated into human trials and could be repurposed as an effective treatment for severe diarrhoea caused by MDR Shigella and other enteric pathogens in LMICs. Funding: Tres Cantos Open Lab Foundation (projects TC239 and TC246), the Bill and Melinda Gates Foundation (grant OPP1172483) and Wellcome (215515/Z/19/Z).


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Shigella , Animais , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Criança , Diarreia , Reposicionamento de Medicamentos , Humanos , Camundongos , Suínos
6.
Antimicrob Agents Chemother ; 55(12): 5740-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21968362

RESUMO

Malaria is one of the deadliest infectious diseases in the world, with the eukaryotic parasite Plasmodium falciparum causing the most severe form of the disease. Discovery of new classes of antimalarial drugs has become an urgent task to counteract the increasing problem of drug resistance. Screening directly for compounds able to inhibit parasite growth in vitro is one of the main approaches the malaria research community is now pursuing for the identification of novel antimalarial drug leads. Very recently, thousands of compounds with potent activity against the parasite P. falciparum have been identified and information about their molecular descriptors, antiplasmodial potency, and cytotoxicity is publicly available. Now the challenges are how to identify the most promising chemotypes for further development and how best to progress these compounds through a lead optimization program to generate antimalarial drug candidates. We report here the first chemical series to be characterized from one of those screenings, a completely novel chemical class with the generic name cyclopropyl carboxamides that has never before been described as having antimalarial or other pharmacological activities. Cyclopropyl carboxamides are potent inhibitors of drug-sensitive and -resistant strains of P. falciparum in vitro and show in vivo oral efficacy in malaria mouse models. In the present work, we describe the biological characterization of this chemical family, showing that inhibition of their still unknown target has very favorable pharmacological consequences but the compounds themselves seem to select for resistance at a high frequency.


Assuntos
Amidas , Antimaláricos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Amidas/uso terapêutico , Amidas/toxicidade , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Linhagem Celular , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade , Resultado do Tratamento
7.
Int J Parasitol Drugs Drug Resist ; 17: 186-190, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673330

RESUMO

Emerging artemisinin resistance in Plasmodium falciparum malaria has the potential to become a global public health crisis. In Southeast Asia, this phenomenon clinically manifests in the form of delayed parasite clearance following artemisinin treatment. Reduced artemisinin susceptibility is limited to the early ring stage window, which is sufficient to allow parasites to survive the short half-life of artemisinin exposure. A screen of known clinically-implemented antimalarial drugs was performed to identify a drug capable of enhancing the killing activity of artemisinins during this critical resistance window. As a result, lumefantrine was found to increase the killing activity of artemisinin against an artemisinin-resistant clinical isolate harboring the C580Y kelch13 mutation. Isobologram analysis revealed synergism during the early ring stage resistance window, when lumefantrine was combined with artemether, an artemisinin derivative clinically partnered with lumefantrine. These findings suggest that lumefantrine should be clinically explored as a partner drug in artemisinin-based combination therapies to control emerging artemisinin resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Humanos , Lumefantrina , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários
8.
ACS Chem Biol ; 16(11): 2348-2372, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609851

RESUMO

The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics. Disruption of the calcium homeostasis is associated with compromised digestive vacuole membrane integrity and release of its contents, leading to programmed cell death-like features characterized by loss of mitochondrial membrane potential and DNA degradation. Intriguingly, chloroquine (CQ)-treated parasites were previously reported to exhibit such cellular features. Using a high-throughput phenotypic screen, we identified 158 physiological disruptors (hits) of parasite calcium distribution from a small subset of approximately 3000 compounds selected from the GSK TCAMS (Tres Cantos Anti-Malarial Set) compound library. These compounds were then extensively profiled for biological activity against various CQ- and artemisinin-resistant Plasmodium falciparum strains and stages. The hits were also examined for cytotoxicity, speed of antimalarial activity, and their possible inhibitory effects on heme crystallization. Overall, we identified three compounds, TCMDC-136230, -125431, and -125457, which were potent in inducing calcium redistribution but minimally inhibited heme crystallization. Molecular superimposition of the molecules by computational methods identified a common pharmacophore, with the best fit assigned to TCMDC-125457. There were low cytotoxicity or CQ cross-resistance issues for these three compounds. IC50 values of these three compounds were in the low micromolar range. In addition, TCMDC-125457 demonstrated high efficacy when pulsed in a single-dose combination with artesunate against tightly synchronized artemisinin-resistant ring-stage parasites. These results should add new drug options to the current armament of antimalarial drugs as well as provide promising starting points for development of drugs with non-classical modes of action.


Assuntos
Antimaláricos/farmacologia , Cálcio/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Homeostase/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Benzofuranos/química , Citosol/metabolismo , DNA/metabolismo , Imidazóis/química , Mitocôndrias/metabolismo , Plasmodium falciparum/metabolismo , Relação Estrutura-Atividade
9.
Artigo em Inglês | MEDLINE | ID: mdl-30580023

RESUMO

Artemisinin derivatives and their partner drugs in artemisinin combination therapies (ACTs) have played a pivotal role in global malaria mortality reduction during the last two decades. The loss of artemisinin efficacy due to evolving drug-resistant parasites could become a serious global health threat. Dihydroartemisinin-piperaquine is a well tolerated and generally highly effective ACT. The implementation of a partner drug in ACTs is critical in the control of emerging artemisinin resistance. Even though artemisinin is highly effective in parasite clearance, it is labile in the human body. A partner drug is necessary for killing the remaining parasites when the pulses of artemisinin have ceased. A population of Plasmodium falciparum parasites in Cambodia and adjacent countries has become resistant to piperaquine. Increased copy number of the genes encoding the haemoglobinases Plasmepsin II and Plasmepsin III has been linked with piperaquine resistance by genome-wide association studies and in clinical trials, leading to the use of increased plasmepsin II/plasmepsin III copy number as a molecular marker for piperaquine resistance. Here we demonstrate that overexpression of plasmepsin II and plasmepsin III in the 3D7 genetic background failed to change the susceptibility of P. falciparum to artemisinin, chloroquine and piperaquine by both a standard dose-response analysis and a piperaquine survival assay. Whilst plasmepsin copy number polymorphism is currently implemented as a molecular surveillance resistance marker, further studies to discover the molecular basis of piperaquine resistance and potential epistatic interactions are needed.


Assuntos
Antimaláricos/farmacologia , Artesunato/farmacologia , Ácido Aspártico Endopeptidases/genética , Cloroquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Camboja , Resistência a Medicamentos , Dosagem de Genes , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Plasmodium falciparum/enzimologia
10.
ChemMedChem ; 14(14): 1329-1335, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31188540

RESUMO

Herein we describe the optimization of a phenotypic hit against Plasmodium falciparum based on an aminoacetamide scaffold. This led to N-(3-chloro-4-fluorophenyl)-2-methyl-2-{[4-methyl-3-(morpholinosulfonyl)phenyl]amino}propanamide (compound 28) with low-nanomolar activity against the intraerythrocytic stages of the malaria parasite, and which was found to be inactive in a mammalian cell counter-screen up to 25 µm. Inhibition of gametes in the dual gamete activation assay suggests that this family of compounds may also have transmission blocking capabilities. Whilst we were unable to optimize the aqueous solubility and microsomal stability to a point at which the aminoacetamides would be suitable for in vivo pharmacokinetic and efficacy studies, compound 28 displayed excellent antimalarial potency and selectivity; it could therefore serve as a suitable chemical tool for drug target identification.


Assuntos
Acetamidas/farmacologia , Antimaláricos/farmacologia , Acetamidas/síntese química , Acetamidas/farmacocinética , Animais , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
12.
J Med Chem ; 60(16): 6880-6896, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28806082

RESUMO

Since the appearance of resistance to the current front-line antimalarial treatments, ACTs (artemisinin combination therapies), the discovery of novel chemical entities to treat the disease is recognized as a major global health priority. From the GSK antimalarial set, we identified an aminoxadiazole with an antiparasitic profile comparable with artemisinin (1), with no cross-resistance in a resistant strains panel and a potential new mode of action. A medicinal chemistry program allowed delivery of compounds such as 19 with high solubility in aqueous media, an acceptable toxicological profile, and oral efficacy. Further evaluation of the lead compounds showed that in vivo genotoxic degradants might be generated. The compounds generated during this medicinal chemistry program and others from the GSK collection were used to build a pharmacophore model which could be used in the virtual screening of compound collections and potentially identify new chemotypes that could deliver the same antiparasitic profile.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antimaláricos/farmacologia , Oxidiazóis/farmacologia , 2,2'-Dipiridil/administração & dosagem , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/farmacologia , 2,2'-Dipiridil/toxicidade , Animais , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Antimaláricos/toxicidade , Atovaquona/farmacologia , Cloroquina/farmacologia , Desenho de Fármacos , Feminino , Humanos , Hidrazinas/metabolismo , Camundongos , Testes de Mutagenicidade , Mutagênicos/metabolismo , Oxidiazóis/administração & dosagem , Oxidiazóis/síntese química , Oxidiazóis/toxicidade , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/farmacologia , Relação Estrutura-Atividade
13.
Nat Commun ; 7: 11901, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301419

RESUMO

Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.


Assuntos
Resistência a Medicamentos , Parasitos/fisiologia , Plasmodium falciparum/fisiologia , Animais , Antimaláricos/farmacologia , Células Clonais , Resistência a Medicamentos/efeitos dos fármacos , Mutação INDEL/genética , Mutação/genética , Parasitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética
14.
J Med Chem ; 58(16): 6448-55, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26222445

RESUMO

Screening of the GSK corporate collection, some 1.9 million compounds, against Plasmodium falciparum (Pf), revealed almost 14000 active hits that are now known as the Tres Cantos Antimalarial Set (TCAMS). Followup work by Calderon et al. clustered and computationally filtered the TCAMS through a variety of criteria and reported 47 series containing a total of 522 compounds. From this enhanced set, we identified the carbamoyl triazole TCMDC-134379 (1), a known serine protease inhibitor, as an excellent starting point for SAR profiling. Lead optimization of 1 led to several molecules with improved antimalarial potency, metabolic stabilities in mouse and human liver microsomes, along with acceptable cytotoxicity profiles. Analogue 44 displayed potent in vitro activity (IC50 = 10 nM) and oral activity in a SCID mouse model of Pf infection with an ED50 of 100 and ED90 of between 100 and 150 mg kg(-1), respectively. The results presented encourage further investigations to identify the target of these highly active compounds.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Animais , Antimaláricos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Malária/tratamento farmacológico , Malária/psicologia , Malária Falciparum/tratamento farmacológico , Camundongos , Camundongos SCID , Microssomos Hepáticos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Serina Proteinase/metabolismo , Relação Estrutura-Atividade , Triazóis/metabolismo
15.
PLoS One ; 7(2): e30949, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383983

RESUMO

Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipoxantina/química , Concentração Inibidora 50 , Reprodutibilidade dos Testes , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA