Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 111, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596531

RESUMO

BACKGROUND: Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS: Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS: aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS: For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Linfócitos T , Homeostase , Apoptose , Calcineurina
2.
Parasitol Int ; 66(2): 47-55, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27888011

RESUMO

Leishmania (Leishmania) infantum chagasi is one of the agents that cause visceral leishmaniasis. This disease occurs more frequently in third world countries, such as Brazil. The treatment is arduous, and is dependent on just a few drugs like the antimonial derivatives and amphotericin B. Moreover, these drugs are not only expensive, but they can also cause severe side effects and require long-term treatment. Therefore, it is very important to find new compounds that are effective against leishmaniasis. In the present work we evaluated a new group of synthetic amides against the promastigote and amastigote forms of L. infantum chagasi. The results showed that one of these amides in particular, presented very effective activity against the promastigotes and amastigotes of L. infantum chagasi at low concentrations and it also presented low toxicity for mammal cells, which makes this synthetic amide a promising drug for combating leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Fenetilaminas/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Brasil , Linhagem Celular , Descoberta de Drogas , Leishmania/efeitos dos fármacos , Leishmania/ultraestrutura , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/fisiologia , Leishmania infantum/ultraestrutura , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Fenetilaminas/síntese química , Fenetilaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA