RESUMO
BACKGROUND: Complementary feeding is critical in establishing undernutrition. However, experimental undernourished diets do not represent the amount of nutrients in the complementary diets of undernourished children. OBJECTIVES: To develop, validate, and evaluate the impact of a new murine model of undernutrition on the intestinal epithelium, based on the complementary diet of undernourished children from 7 countries with low-socioeconomic power belonging to the Malnutrition-Enteric Diseases (MAL-ED) cohort study. METHODS: We used the difference in the percentage of energy, macronutrients, fiber and zinc in the complementary diet of children without undernutrition compared with stunting (height-for-age Z-score < -2) for the MAL-ED diet formulation. Subsequently, C57BL/6 mice were fed a control diet (AIN-93M diet) or MAL-ED diet for 28 d. Weight was measured daily; body composition was measured every 7 d; lactulose:mannitol ratio (LM) and morphometry were evaluated on days 7 and 28; the cotransport test and analysis of intestinal transporters and tight junctions were performed on day 7. RESULTS: The MAL-ED diet presented -8.03% energy, -37.46% protein, -24.20% lipid, -10.83% zinc, +5.93% carbohydrate, and +45.17% fiber compared with the control diet. This diet rapidly reduced weight gain and compromised body growth and energy reserves during the chronic period (P < 0.05). In the intestinal epithelial barrier, this diet caused an increase in the LM (P < 0.001) and reduced (P < 0.001) the villous area associated with an increase in FAT/CD36 in the acute period and increased (P < 0.001) mannitol excretion in the chronic period. CONCLUSIONS: The MAL-ED diet induced undernutrition in mice, resulting in acute damage to the integrity of the intestinal epithelial barrier and a subsequent increase in the intestinal area during the chronic period. This study introduces the first murine model of undernutrition for the complementary feeding phase, based on data from undernourished children in 7 different countries.
Assuntos
Transtornos da Nutrição Infantil , Desnutrição , Humanos , Lactente , Criança , Animais , Camundongos , Estudos de Coortes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Desnutrição/complicações , Fenômenos Fisiológicos da Nutrição do Lactente , Transtornos da Nutrição Infantil/complicações , Mucosa Intestinal/metabolismo , Manitol , ZincoRESUMO
Acrolein is the main toxic metabolite of ifosfamide (IFO) that causes urothelial damage by oxidative stress and inflammation. Here, we investigate the molecular mechanism of action of gingerols, Zingiber officinale bioactive molecules, as an alternative treatment for ifosfamide-induced hemorrhagic cystitis. Female Swiss mice were randomly divided into 5 groups: control; IFO; IFO + Mesna; and IFO + [8]- or [10]-gingerol. Mesna (80 mg/kg, i.p.) was given 5 min before, 4 and 8 h after IFO (400mg/kg, i.p.). Gingerols (25 mg/kg, p.o.) were given 1 h before and 4 and 8 h after IFO. Animals were euthanized 12 h after IFO injection. Bladders were submitted to macroscopic and histological evaluation. Oxidative stress and inflammation were assessed by malondialdehyde (MDA) or myeloperoxidase assays, respectively. mRNA gene expression was performed to evaluate mesna and gingerols mechanisms of action. Mesna was able to protect bladder tissue by activating NF-κB and NrF2 pathways. However, we demonstrated that gingerols acted as an antioxidant and anti-inflammatory agent stimulating the expression of IL-10, which intracellularly activates JAK/STAT/FOXO signaling pathway.