Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 21(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837785

RESUMO

Yeasts are considered a useful system for the development of vaccines for human and veterinary health. Species such as Saccharomyces cerevisiae and Pichia pastoris have been used successfully as host organisms for the production of subunit vaccines. These organisms have been also explored as vaccine vehicles enabling the delivery of antigens such as proteins and nucleic acids. The employed species possess a GRAS status (Generally Recognized as Safe) for the production of therapeutic proteins, besides promoting immunostimulation due to the properties of their wall cell composition. This strategy allows the administration of nucleic acids orally and a specific delivery to professional antigen-presenting cells (APCs). In this review, we seek to outline the development of whole yeast vaccines (WYV) carrying nucleic acids in different approaches in the medical field, as well as the immunological aspects of this vaccine strategy. The data presented here reveal the application of this platform in promoting effective immune responses in the context of prophylactic and therapeutic approaches.


Assuntos
Sistemas de Liberação de Medicamentos , Vacinas de DNA/genética , Vacinas Sintéticas/genética , Leveduras/genética , Humanos , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Vacinas de DNA/administração & dosagem , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA
2.
Cells ; 13(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38994984

RESUMO

Breast cancer risk factors include lifestyle, genetic-hormonal influences, and viral infections. Human papillomavirus (HPV), known primarily as the etiological agent of cervical cancer, also appears active in breast carcinogenesis, as evidenced in our study of 56 patients from northeastern Brazil. We assessed the clinical and sociodemographic characteristics, correlating them with various breast cancer tumor types. HPV detection involved amplifying the L1 region, with viral load measured using the E2/E6 ratio and viral activity indicated by E5 oncogene expression. Predominantly, patients over 56 years of age with healthy lifestyles showed a high incidence of invasive ductal carcinoma and triple-negative breast cancer. HPV was detected in 35.7% of cases, mostly HPV16, which is associated with high viral loads (80 copies per cell) and significant E5 expression. These results hint at a possible link between HPV and breast carcinogenesis, necessitating further studies to explore this association and the underlying viral mechanisms.


Assuntos
Neoplasias da Mama , Infecções por Papillomavirus , Humanos , Brasil/epidemiologia , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Neoplasias da Mama/virologia , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Adulto , Idoso , Papillomaviridae , Carga Viral
3.
ADMET DMPK ; 12(2): 299-317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720922

RESUMO

Background and purpose: The employment of yeasts for biomedical purposes has become increasingly frequent for the delivery of prophylactic and therapeutic products. Its structural components, such as ß-glucans, mannan, and chitin, can be explored as immunostimulators that show safety and low toxicity. Besides, this system minimizes antigen degradation after administration, facilitating the delivery to the target cells. Review approach: This review sought to present molecules derived from yeast, called yeast shells (YS), and their applications as carrier vehicles for drugs, proteins, and nucleic acids for immunotherapy purposes. Furthermore, due to the diversity of information regarding the production and immunostimulation of these compounds, a survey of the protocols and immune response profiles generated was presented. Key results: The use of YS has allowed the development of strategies that combine efficiency and effectiveness in antigen delivery. The capsular structure can be recognized and phagocytized by dendritic cells and macrophages. In addition, the combination with different molecules, such as nanoparticles or even additional adjuvants, improves the cargo loading, enhancing the system. Activation by specific immune pathways can also be achieved by different administration routes. Conclusion: Yeast derivatives combined in different ways can increase immunostimulation, enhancing the delivery of medicines and vaccine antigens. These aspects, combined with the simplicity of the production steps, make these strategies more accessible to be applied in the prevention and treatment of various diseases.

4.
Vaccines (Basel) ; 11(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37631902

RESUMO

In the last decades, technological advances for RNA manipulation enabled and expanded its application in vaccine development. This approach comprises synthetic single-stranded mRNA molecules that direct the translation of the antigen responsible for activating the desired immune response. The success of RNA vaccines depends on the delivery vehicle. Among the systems, yeasts emerge as a new approach, already employed to deliver protein antigens, with efficacy demonstrated through preclinical and clinical trials. ß-glucans and mannans in their walls are responsible for the adjuvant property of this system. Yeast ß-glucan capsules, microparticles, and nanoparticles can modulate immune responses and have a high capacity to carry nucleic acids, with bioavailability upon oral immunization and targeting to receptors present in antigen-presenting cells (APCs). In addition, yeasts are suitable vehicles for the protection and specific delivery of therapeutic vaccines based on RNAi. Compared to protein antigens, the use of yeast for DNA or RNA vaccine delivery is less established and has fewer studies, most of them in the preclinical phase. Here, we present an overview of the attributes of yeast or its derivatives for the delivery of RNA-based vaccines, discussing the current challenges and prospects of this promising strategy.

5.
Pharmaceutics ; 15(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37514084

RESUMO

Improving antigen presentation is crucial for the success of immunization strategies. Yeasts are classically used as biofactories to produce recombinant proteins and are efficient vehicles for antigen delivery, in addition to their adjuvant properties. Despite the absence of epidemic outbreaks, several vaccine approaches continue to be developed for Zika virus infection. The development of these prophylactic strategies is fundamental given the severity of clinical manifestations, mainly due to viral neurotropism. The present study aimed to evaluate in vivo the immune response induced by P. pastoris recombinant strains displaying epitopes of the envelope (ENV) and NS1 ZIKV proteins. Intramuscular immunization with heat-attenuated yeast enhanced the secretion of IL-6, TNF-α, and IFN-γ, in addition to the activation of CD4+ and CD8+ T cells, in BALB/c mice. P. pastoris displaying ENV epitopes induced a more robust immune response, increasing immunoglobulin production, especially IgG isotypes. Both proposed vaccines showed the potential to induce immune responses without adverse effects, confirming the safety of administering P. pastoris as a vaccine vehicle. Here, we demonstrated, for the first time, the evaluation of a vaccine against ZIKV based on a multiepitope construct using yeast as a delivery system and reinforcing the applicability of P. pastoris as a whole-cell vaccine.

6.
Pathogens ; 11(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36558778

RESUMO

Prophylactic vaccines against human papillomavirus (HPV) have proven efficacy in those who have not been infected by the virus. However, they do not benefit patients with established tumors. Therefore, the development of therapeutic options for HPV-related malignancies is critical. Third-generation vaccines based on nucleic acids are fast and simple approaches to eliciting adaptive immune responses. However, techniques to boost immunogenicity, reduce degradation, and facilitate their capture by immune cells are frequently required. One option to overcome this constraint is to employ delivery systems that allow selective antigen absorption and help modulate the immune response. This review aimed to discuss the influence of these different systems on the response generated by nucleic acid vaccines. The results indicate that delivery systems based on lipids, polymers, and microorganisms such as yeasts can be used to ensure the stability and transport of nucleic acid vaccines to their respective protein synthesis compartments. Thus, in view of the limitations of nucleic acid-based vaccines, it is important to consider the type of delivery system to be used-due to its impact on the immune response and desired final effect.

7.
Genes (Basel) ; 13(12)2022 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-36553554

RESUMO

Gene immunization comprises mRNA and DNA vaccines, which stand out due to their simple design, maintenance, and high efficacy. Several studies indicate promising results in preclinical and clinical trials regarding immunization against ebola, human immunodeficiency virus (HIV), influenza, and human papillomavirus (HPV). The efficiency of nucleic acid vaccines has been highlighted in the fight against COVID-19 with unprecedented approval of their use in humans. However, their low intrinsic immunogenicity points to the need to use strategies capable of overcoming this characteristic and increasing the efficiency of vaccine campaigns. These strategies include the improvement of the epitopes' presentation to the system via MHC, the evaluation of immunodominant epitopes with high coverage against emerging viral subtypes, the use of adjuvants that enhance immunogenicity, and the increase in the efficiency of vaccine transfection. In this review, we provide updates regarding some characteristics, construction, and improvement of such vaccines, especially about the production of synthetic multi-epitope genes, widely employed in the current gene-based vaccines.


Assuntos
COVID-19 , Vacinas Baseadas em Ácido Nucleico , Humanos , COVID-19/prevenção & controle , Imunização , Adjuvantes Imunológicos , Epitopos
8.
Hum Vaccin Immunother ; 17(11): 3855-3870, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34613880

RESUMO

The current pandemic called COVID-19 caused by the SARS-CoV-2 virus brought the need for the search for fast alternatives to both control and fight the SARS-CoV-2 infection. Therefore, a race for a vaccine against COVID-19 took place, and some vaccines have been approved for emergency use in several countries in a record time. Ongoing prophylactic research has sought faster, safer, and precise alternatives by redirecting knowledge of other vaccines, and/or the development of new strategies using available tools, mainly in the areas of genomics and bioinformatics. The current review highlights the development of synthetic antigen vaccines, focusing on the usage of bioinformatics tools for the selection and construction of antigens on the different vaccine constructions under development, as well as strategies to optimize vaccines for COVID-19.


Assuntos
COVID-19 , Vacinas contra COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Vacinas Sintéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA