Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 104(4): 418-422, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32128604

RESUMO

This short note aims to report in detail a preliminary assessment of the concentrations of Cd, Hg and Pb in tissues of blue crabs Callinectes danae collected from the Cananéia-Iguape-Peruíbe estuarine complex (CIP), in the South of São Paulo State coast, Brazil. In October 2014, blue crabs were collected from CIP. Tissues were removed by dissection and metal determination was performed by GF-AAS and CV-AAS. According to statistical analysis, Pb and Cd concentrations in gills were significantly higher than those found in muscles and hepatopancreas, respectively. There were no significant differences in Hg concentrations between samples. Cd, Hg and Pb concentrations in gills and hepatopancreas were lower than those reported in a previous study performed at CIP. However, Cd concentration in hepatopancreas was higher than the Brazilian limit for consumption and new efforts to monitor Cd concentrations in C. danae tissues must be performed.


Assuntos
Monitoramento Biológico/métodos , Braquiúros/química , Estuários , Metais Pesados/análise , Mineração , Poluentes Químicos da Água/análise , Animais , Brasil , Brânquias/química , Hepatopâncreas/química , Músculos/química
2.
Environ Toxicol Chem ; 37(7): 1998-2012, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29608220

RESUMO

The risk assessment of nanomaterials is essential for regulatory purposes and for sustainable nanotechnological development. Although the application of graphene oxide has been widely exploited, its environmental risk is not well understood because several environmental conditions can affect its behavior and toxicity. In the present study, the graphene oxide effect from aquatic ecosystems was assessed considering the interaction with humic acid on 9 organisms: Raphidocelis subcapitata (green algae), Lemna minor (aquatic plant), Lactuca sativa (lettuce), Daphnia magna (planktonic microcrustacean), Artemia salina (brine shrimp), Chironomus sancticaroli (Chironomidae), Hydra attenuata (freshwater polyp), and Caenorhabditis elegans and Panagrolaimus sp. (nematodes). The no-observed-effect concentration (NOEC) was calculated for each organism. The different criteria used to calculate NOEC values were transformed and plotted as a log-logistic function. The hypothetical 5 to 50% hazardous concentration values were, respectively, 0.023 (0.005-0.056) and 0.10 (0.031-0.31) mg L-1 for graphene oxide with and without humic acid, respectively. The safest scenario associated with the predicted no-effect concentration values for graphene oxide in the aquatic compartment were estimated as 20 to 100 µg L-1 (in the absence of humic acid) and 5 to 23 µg L-1 (in the presence of humic acid). Finally, the present approach contributed to the risk assessment of graphene oxide-based nanomaterials and the establishment of nano-regulations. Environ Toxicol Chem 2018;37:1998-2012. © 2018 SETAC.


Assuntos
Ecotoxicologia , Grafite/toxicidade , Substâncias Húmicas/toxicidade , Nanopartículas/toxicidade , Testes de Toxicidade , Animais , Araceae/efeitos dos fármacos , Artemia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Água Doce , Grafite/química , Lactuca/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Temperatura , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA