Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Prosthodont ; 33(4): 389-395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37201944

RESUMO

PURPOSE: This study evaluated the fatigue failure load (FFL) and the number of cycles for fatigue failure (CFF) of traditional (porcelain layer up) and reversed (zirconia layer up) designs of porcelain-veneered zirconia samples prepared with heat-pressing or file-splitting techniques. MATERIALS AND METHODS: Zirconia discs were prepared and veneered with heat-pressed or machined feldspathic ceramic. The bilayer discs were bonded onto a dentin-analog according to the bilayer technique and sample design: traditional heat-pressing (T-HP), reversed heat-pressing (R-HP), traditional file-splitting with fusion ceramic (T-FC), reversed file-splitting with fusion ceramic R-FC), traditional file-splitting with resin cement (T-RC), and reversed file-splitting with resin cement (R-RC). The fatigue tests were performed using the stepwise approach at 20 Hz, 10,000 cycles/step, step-size of 200 N starting at 600 N, and proceeding until failure detection or up to 2600 N if enduring. The failure modes (from radial and/or cone cracks) were analyzed in a stereomicroscope. RESULTS: The reversed design decreased the FFL and CFF of bilayers prepared with heat-pressing and file-splitting with fusion ceramic. The T-HP and T-FC reached the highest results, which were statistically similar between them. The bilayers prepared by the file-splitting with resin cement (T-RC and R-RC) were similar to the R-FC and R-HP groups regarding FFL and CFF. Almost all reverse layering samples failed by radial cracks. CONCLUSIONS: The reverse layering design did not improve the fatigue behavior of porcelain veneered zirconia samples. The three bilayer techniques behaved similarly when used in the reversed design.


Assuntos
Cerâmica , Porcelana Dentária , Cerâmica/uso terapêutico , Cerâmica/química , Porcelana Dentária/química , Coroas , Cimentos de Resina , Teste de Materiais , Propriedades de Superfície , Análise do Estresse Dentário , Zircônio/química , Falha de Restauração Dentária
2.
Clin Oral Investig ; 27(6): 2957-2968, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781479

RESUMO

OBJECTIVES: To evaluate the effect of the remaining tooth structure and different CAD/CAM materials on the fatigue performance and failure mode of endodontically treated premolars restored with endocrowns. MATERIALS AND METHODS: Ninety maxillary premolars were endodontically treated and assigned into 6 groups (n = 15) according to the number of remaining axial walls (four, three, and two) and restorative materials (ultra-translucent zirconia 5Y-PSZ [KATANA UTML] and lithium disilicate [IPS e.max-CAD]). The specimens were subjected to cyclic fatigue loading test (initial load 200 N; 20 Hz). An incremental step load of 100 N per 10,000 cycles was applied until failure. The fatigue failure load (FFL) and number of failure cycles (CFFs) data were statistically analyzed with two-way ANOVA and Kaplan-Meier test (α = 0.05). Failed specimens were examined under a stereomicroscope 25 × and failure modes were determined. RESULTS: FFL and CFF were significantly influenced by restorative material (p < 0.05). 5Y-PSZ endocrowns showed significantly higher FFL when compared with lithium disilicate. The number of remaining walls did not affect the fatigue behavior or failure mode of the specimens. Of the lithium disilicate restorations, 51% had repairable failures, while 95% 5Y-PSZ restorations had non-repairable failures. CONCLUSIONS: Zirconia endocrowns showed better FFL than lithium disilicate endocrowns, regardless of the number of remaining axis walls. Lithium disilicate and 5Y-PSZ endocrowns showed FFL higher than the normal masticatory loads. CLINICAL RELEVANCE: Restoring endodontically treated premolars with endocrown could be a promising treatment, regardless of the remaining axial walls. However, precaution should be taken in material selection since it affects the fatigue resistance and failure mode.


Assuntos
Cerâmica , Coroas , Cerâmica/química , Dente Pré-Molar , Teste de Materiais , Falha de Restauração Dentária , Análise do Estresse Dentário , Propriedades de Superfície , Porcelana Dentária/química , Materiais Dentários , Desenho Assistido por Computador
3.
Clin Oral Investig ; 27(2): 787-796, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36576566

RESUMO

OBJECTIVES: Photo- and dual-polymerized resin-based luting agent was evaluated for elastic moduli effects on ultra-thin lithium disilicate (LD) glass-ceramic strengthening, structural reliability, and stress distribution. MATERIALS AND METHODS: One hundred-sixty LD discs (IPS e.max CAD, Ivoclar/Vivadent) were produced in ultra-thin thicknesses (half with 0.3 mm and the other half with 0.5 mm). The ultra-thin ceramic disks were coated with two different cement types (Variolink Veneer - V and Panavia F 2.0 - P). Two positive control groups were tested following hydrofluoric (HF) acid etching (LDt3, LDt5) and two negative control groups were tested for untreated ceramic (LD 3, LD 5). Biaxial flexural strength (BFS), characteristic strength (σ0) and Weibull modulus (m) were the response variables (n = 20) at the ceramic/resin cement interface (z = 0). Finite element analysis (FEA) was used to calculate maximum principal stress. Data were analyzed using two-way ANOVA, and Tukey's test. Scanning electron microscopy (SEM) was used to analyze the failed specimens using fractography and surface morphology. RESULTS: The BFS of LD at either thickness was not affected by cement types, as also demonstrated by FEA. Structural reliability significantly improved in the positive control group (LDt5). CONCLUSION: The cementation of ultra-thin LD with a resin-cement of varying elastic moduli did not influence BFS. LD surface modification by HF acid-etching increased the reliability. CLINICAL RELEVANCE: Ultra-thin anterior veneer designs made from lithium disilicate have been widely proposed and the apparent success of LD ultra-thin veneers was not influenced by the cement choice in the current studies albeit the elastic moduli luting agents used were of similar values.


Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Resistência à Flexão , Módulo de Elasticidade , Reprodutibilidade dos Testes , Teste de Materiais , Propriedades de Superfície , Porcelana Dentária/química , Cerâmica/química , Cimentos Dentários , Ácido Fluorídrico/química
4.
Clin Oral Investig ; 26(6): 4479-4486, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435492

RESUMO

OBJECTIVE: The aim of this study was to evaluate the effect of four different finishing procedures on the fatigue strength of a fully stabilized zirconia (5Y-FSZ) material. MATERIALS AND METHODS: Disc-shaped specimens of a 5Y-FSZ (Katana UTML, Kuraray Noritake) were made (ISO 6872-2015), grinded with 600- and 1200-grit silicon carbide paper, sintered as recommended, and randomly assigned into four groups according to the finishing technique: C (control, as-sintered), P (polished with polishing rubbers), G (glaze application - powder/liquid technique), and PG (polished with polishing rubbers + glaze application - powder/liquid). Then fatigue strength (staircase method), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses were performed. RESULTS: The C group presented the lowest fatigue strength, while the PG group presented the highest. The P and G groups presented intermediate behavior, presenting similar statistical results. XRD showed similar crystalline phase patterns for all groups. SEM images revealed some changes in the zirconia surface, with the P group presenting some scratches on the surface, while the scratches in the PG group were filled with the glaze material. CONCLUSION: None of the techniques analyzed in this study impaired the fatigue strength of fully stabilized zirconia. Importantly, the polishing rubbers combined with glaze application (PG group) improved its fatigue strength. CLINICAL RELEVANCE: The polishing rubbers followed by glaze application improve the fatigue strength in ultra-translucent zirconia.


Assuntos
Teste de Materiais , Zircônio , Cerâmica/química , Polimento Dentário , Humanos , Microscopia Eletrônica de Varredura , Pós , Propriedades de Superfície , Zircônio/química
5.
Clin Oral Investig ; 26(1): 889-900, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34448074

RESUMO

OBJECTIVE: To investigate the influence of different finishing/polishing techniques and in situ aging on the flexural strength (σ), surface roughness, and Candida albicans adherence of 5 mol% yttria-stabilized zirconia (ultratranslucent zirconia). MATERIALS AND METHODS: A total of 120 zirconia bars (Prettau Anterior, Zirkonzahn) with dimensions of 8 × 2 × 0.5 mm were divided into 8 groups (n = 15) according to two factors: "in situ aging" (non-aged and aged (A)) and "finishing/polishing" (control (C), diamond rubber polishing (R), coarse grit diamond bur abrasion (B), and coarse grit diamond bur abrasion + diamond rubber polishing (BR)). Half of the samples from each group were subjected to a 60-day in situ aging by fixing the bars into cavities prepared in the posterior region of the base of complete or partial dentures of 15 patients. The samples were then subjected to the mini flexural (σ) test (1 mm/min). A total of 40 zirconia blocks (5 × 5 × 2 mm) were prepared and subjected to roughness (Ra) analyses and fungal adherence and complementary analyses (X-ray diffraction (XRD) and scanning electron microscopy (SEM)). The data of mean σ (MPa) and roughness Ra (µm) were statistically analyzed by two-way and one-way ANOVA, respectively, and Tukey's test. The Weibull analysis was performed for σ data. The fungal adhesion (Log CFU/mL) data were analyzed by Kruskal-Wallis tests. RESULTS: For flexural resistance, the "finishing/polishing" factor was statistically significant (P = 0.0001); however, the "in situ aging" factor (P = 0.4458) was not significant. The non-aged (507.3 ± 115.7 MPa) and aged (487.6 ± 118.4 MPa) rubber polishing groups exhibited higher mean σ than the other techniques. The non-aged (260.2 ± 43.3 MPa) and aged (270.1 ± 48.8 MPa) bur abrasion groups presented lower σ. The coarse-grit diamond bur abrasion group (1.82 ± 0.61 µm) presented the highest roughness value (P = 0.001). Cell adhesion was not different among groups (P = 0.053). Group B presented the most irregular surface and the highest roughness Ra of 0.61 m. CONCLUSIONS: The finishing of ultratranslucent zirconia might be preferably done with a diamond rubber polisher. Moreover, the protocols used did not interfere with Candida albicans adhesion. CLINICAL RELEVANCE: Coarse-grit diamond burs might be avoided for finishing ultratranslucent monolithic zirconia, which might be preferably performed with a diamond rubber polisher.


Assuntos
Candida albicans , Resistência à Flexão , Cerâmica , Polimento Dentário , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Zircônio
6.
J Adhes Dent ; 16(1): 57-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24000333

RESUMO

PURPOSE: To evaluate the influence of the number of porcelain layers on its cohesive strength and on bonding to zirconia. MATERIALS AND METHODS: Y-TZP blocks were cut into 1 cm3 specimens (n = 30). The feldspathic porcelain (V9) was applied to the zirconia in different numbers of layers up to 1 cm total thickness (n = 10): ZP1 - one layer; ZP2 - two layers; ZP3 - three layers. Ten specimens with V9 were prepared following the same protocols of groups 1 (P1) and 3 (P3). All study specimens were sintered three times. The specimens were cut into 1 mm2 microbars and tested under tension in a universal testing machine (0.5 mm/min). We calculated strength (σ, in MPa) by dividing the fracture load (N) by the fractured area (mm2). The failure mode was classified as cohesive (used to calculate the cohesive strength, σc) or adhesive (bond strength, σa). The data were analyzed by Kruskal-Wallis and Dunn's tests (α = 0.05) or ANOVA and Tukey's test (α = 0.05), according to their distribution parameters. RESULTS: The ZP1 group presented the highest values for σa data, compared with other groups, which were statistically similar. The predominant failure mode for the bonded specimens was cohesive. With regard to the cohesive strength (σc), ZP1 presented the highest values. CONCLUSION: It can be concluded that the presence of more than one porcelain layer decreases its cohesive strength and its bonding strength to zirconia.


Assuntos
Colagem Dentária , Materiais Dentários/química , Porcelana Dentária/química , Ítrio/química , Zircônio/química , Adesividade , Silicatos de Alumínio/química , Análise do Estresse Dentário/instrumentação , Temperatura Alta , Humanos , Teste de Materiais , Compostos de Potássio/química , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
7.
Dent Mater ; 40(3): 477-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145923

RESUMO

OBJECTIVE: This study evaluated the effect of an experimental borosilicate glass on the mechanical and optical behavior of 5Y-PSZ zirconia and comparing it to commercial glaze and as-sintered. METHODS: Disc-shaped specimens of a 5Y-PSZ (Zpex Smile) were prepared and sintered (1550 °C, 2 h). The zirconia discs were randomly divided according to the surface treatment: as-sintered (C), commercial glaze (G), and experimental borosilicate glass (SL). Glaze and experimental glass powders were mixed with building liquids and applied to zirconia with a brush. G specimens were fired at 950 °C and SL at 1200 °C. An extended dwell time of 20 min was applied to both groups. Biaxial flexural strength, roughness (Ra and Rz), translucency (TP00), color alteration (ΔE00), Vickers hardness, fracture toughness, residual stresses, and x-ray diffraction analyses were conducted. Statistical analyses were performed with Weibull statistics, Kruskal-Wallis, or ANOVA tests (α = 5%). RESULTS: SL yielded the highest flexural strength (799.35 MPa), followed by G (662.34 MPa), and C (485.38 MPa). The fracture origin of SL specimens was in the bulk zirconia, while G and C showed fractures starting at the surface. As-sintered reached the highest fracture toughness and hardness. Glaze and borosilicate glass provided surface compressive stresses. Borosilicate glass application led to phase transformation (t→m). SL and G showed the lowest roughness. TP00 and ΔE00 were similar among groups. SIGNIFICANCE: Borosilicate glass improved strength without harming the optical properties of third-generation zirconia. Toughness and roughness provided by the experimental glass were similar to those from commercial glaze.


Assuntos
Cerâmica , Resistência à Flexão , Teste de Materiais , Propriedades de Superfície , Zircônio , Materiais Dentários
8.
Dent Mater ; 40(1): 37-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37880068

RESUMO

OBJECTIVES: To evaluate the mechanical and antimicrobial properties of boron-containing coating on translucent zirconia (5Y-PSZ). METHODS: 5Y-PSZ discs (Control) were coated with a glaze (Glaze), silver- (AgCoat), or boron-containing (BCoat) glasses. The coatings' antimicrobial potential was characterized using S. mutans biofilms after 48 h via viable colony-forming units (CFU), metabolic activity (CV) assays, and quantification of extracellular polysaccharide matrix (EPS). Biofilm architectures were imaged under scanning electron and confocal laser scanning microscopies (SEM and CLSM). The cytocompatibility was determined at 24 h via WST-1 and LIVE&DEAD assays using periodontal ligament stem cells (PDLSCs). The coatings' effects on properties were characterized by Vickers hardness, biaxial bending tests, and fractography analysis. Statistical analyses were performed via one-way ANOVA, Tukey's tests, Weibull analysis, and Pearson's correlation analysis. RESULTS: BCoat significantly decreased biofilm formation, having the lowest CFU and metabolic activity compared with the other groups. BCoat and AgCoat presented the lowest EPS, followed by Glaze and Control. SEM and CLSM images revealed that the biofilms on BCoat were thin and sparse, with lower biovolume. In contrast, the other groups yielded robust biofilms with higher biovolume. The cytocompatibility was similar in all groups. BCoat, AgCoat, and Glaze also presented similar hardness and were significantly lower than Control. BCoat had the highest flexural strength, characteristic strength and Weibull parameters (σF: 625 MPa; σ0: 620 MPa; m = 11.5), followed by AgCoat (σF: 464 MPa; σ0: 478 MPa; m = 5.3). SIGNIFICANCE: BCoat is a cytocompatible coating with promising antimicrobial properties that can improve the mechanical properties and reliability of 5Y-PSZ.


Assuntos
Anti-Infecciosos , Cerâmica , Teste de Materiais , Boro/farmacologia , Reprodutibilidade dos Testes , Zircônio/farmacologia , Propriedades de Superfície
9.
Sci Rep ; 14(1): 13262, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858417

RESUMO

The purpose of this study was to evaluate the fatigue survival of 5Y-PSZ zirconia infiltrated with an experimental glass and bonded onto dentin analogues. Disc-shaped specimens of a 5Y-PSZ (Katana UTML Kuraray Noritake) were cemented onto dentin analogs (NEMA G10) and divided into four groups (n = 15): Zctrl Group (control, without infiltration); Zglz Group (Glaze, compression surface); Zinf-comp Group (Experimental Glass, compression surface); Zinf-tens Group (Experimental Glass, tension surface). Surface treatments were varied. Cyclic fatigue loading, oblique transillumination, stereomicroscope examination, and scanning electron microscopy were performed. Fatigue data were analyzed (failure load and number of cycles) using survival analysis (Kaplan-Meier and Log-Rank Mantel-Cox). There was no statistically significant difference in fatigue survival between the Zglz, Zctrl, and Zinf-comp groups. The Zinf-tens group presented a significantly higher failure load when compared to the other groups and exhibited a different failure mode. The experimental glass effectively infiltrated the zirconia, enhancing structural reliability, altering the failure mode, and improving load-bearing capacity over more cycles, particularly in the group where the glass was infiltrated into the tensile surface of the zirconia. Glass infiltration into 5Y-PSZ zirconia significantly enhanced structural reliability and the ability to withstand loads over an increased number of cycles. This approach has the potential to increase the durability of zirconia restorations, reducing the need for replacements and save time and resources, promoting efficiency in clinical practice.


Assuntos
Dentina , Vidro , Teste de Materiais , Zircônio , Zircônio/química , Vidro/química , Dentina/química , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
10.
Int J Prosthodont ; 35(4): 469-479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125871

RESUMO

PURPOSE: To evaluate the biaxial flexural strength of different porcelain-to-zirconia thickness ratios and bonding strategies of a stress-free bilayer CAD/CAM ceramic system. MATERIALS AND METHODS: A total of 60 zirconia discs (diameter: 15 mm; thickness: 0.3 or 0.5 mm; n = 30 for each thickness) were divided into six groups (n = 10 each) according to porcelain-to-zirconia ratio and bonding strategy: VM/Zr (control): zirconia discs veneered with a feldspathic ceramic (VM 9, Vita) in 0.9-mm and 0.7-mm thicknesses using a conventional hand-layering technique; VB/Zr-SBU: zirconia discs airborne particle-abraded with 50-µm Al2O3 particles followed by an MDP primer application (Single Bond Universal, 3M) and bonded to the porcelain with a resin cement (Panavia F 2.0, Kuraray); and VB/Zr-RC: zirconia discs airborne particle-abraded with 30-µm silica-coated Al2O3 particles and silanized and bonded to the porcelain with the same resin cement. Before cementation, the VB (Vitablocs II) discs were etched with 5% hydrofluoric acid (60 seconds), followed by silane application. The bilayers (thickness = 1.2 mm) were loaded with 750 g while light curing the resin cement. Two porcelain-to-zirconia thickness ratios were evaluated: 0.9: 0.3 mm and 0.7: 0.5 mm. All groups were subjected to 106 mechanical cycles, followed by a biaxial flexural test. Data (MPa) were subjected to two-way analysis of variance (ANOVA), Tukey test (5%), and Weibull analyses. RESULTS: Two-way ANOVA revealed that the factor porcelain-to-zirconia ratio (P = .0556) was not significant; however, the bonding strategy factor was statistically significant. Among the 0.5-mm zirconia groups, the VB/Zr-SBU group presented higher flexural strength (s) than the VM/Zr or VB/Zr-RC groups. Similar results were also found for the 0.3-mm zirconia groups, in which the VB/Zr-SBU group also presented higher strength than the others, which were similar in comparison (Tukey). The Weibull modulus was similar among the groups; however, the characteristic strength was significantly different (P = .000). CONCLUSION: The zirconia bonding strategy with 50-µm Al2O3 airborne-particle abrasion, followed by a primer application, increases the flexural strength of a stress-free bilayer CAD/CAM ceramic system.


Assuntos
Porcelana Dentária , Cimentos de Resina , Cerâmica/química , Porcelana Dentária/química , Análise do Estresse Dentário , Resistência à Flexão , Ácido Fluorídrico , Teste de Materiais , Silanos , Dióxido de Silício/química , Zircônio
11.
Eur J Dent ; 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535658

RESUMO

OBJECTIVES: This in vitro study was performed to evaluate fatigue survival by shear test in the union of leucite-reinforced feldspathic ceramic using different cement thicknesses. MATERIALS AND METHODS: Leucite-reinforced glass ceramics blocks were sectioned in 2-mm thick slices where resin cylinders were cemented. The samples were distributed in two experimental groups (n = 20) according to the cement thickness (60 and 300 µm). The specimens of each group were submitted to the stepwise fatigue test in the mechanical cycling machine under shear stress state, with a frequency of 2 Hz, a step-size of 0.16 bar, starting with a load of 31 N (1.0 bar) and a lifetime of 20,000 cycles at each load step. RESULTS: The samples were analyzed in a stereomicroscope and scanning electron microscopy to determine the failure type. There is no significant difference between the mean values of shear bond strength according to both groups. Log-rank (p = 0.925) and Wilcoxon (p = 0.520) tests revealed a similar survival probability in both cement layer thicknesses according to the confidence interval (95%). The fracture analysis showed that the mixed failure was the most common failure type in the 300-µm thickness group (80%), while adhesive failure was predominant in the 60-µm thickness group (67%). The different cement thicknesses did not influence the leucite ceramic bonding in fatigue shear testing; however, the thicker cement layer increased the predominance of the ceramic material failure. CONCLUSION: The resin cement thicknesses bonded to leucite ceramic did not influence the long-term interfacial shear bond strength, although thicker cement layer increased the ceramic material cohesive failure. Regardless the cement layer thickness, the shear bond strength lifetime decreases under fatigue.

12.
Vaccines (Basel) ; 10(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36298480

RESUMO

PURPOSE: This study sought to investigate the acceptance rate and associated factors of COVID-19 vaccines among dentists and dental students in seven countries. MATERIAL AND METHODS: A structured questionnaire prepared and guided by the report of the SAGE Working Group on Vaccine Hesitancy was distributed among groups of dentists and dental students in seven countries across four continents. RESULTS: A total of 1527 subjects (850 dentists and 677 dental students) participated in this survey. Although 72.5% of the respondents reported their intention to accept COVID-19 vaccines (dentists: 74.4%, dental students: 70.2%), there was a significant difference in agreement between dentists/dental students across countries; generally, respondents in upper-middle-, and high-income countries (UM-HICs) showed significantly higher acceptance rates compared to those in low- and lower-middle income countries (L-LMICs). Potential predictors of higher vaccine acceptance included being a dentist, being free of comorbidity, being well-informed about COVID-19 vaccines, having better knowledge about COVID-19 complications, having anxiety about COVID-19 infection, having no concerns about the side effects of the produced vaccines and being a resident of an UM-HIC. CONCLUSION: The results of our survey indicate a relatively good acceptance rate of COVID-19 among the surveyed dentists and dental students. However, dentists and dental students in L-LMICs showed significantly lower vaccine acceptance rates and trust in COVID-19 vaccines compared to their counterparts in UM-HICs. Our results provide important information to policymakers, highlighting the need for implementation of country-specific vaccine promotion strategies, with special focus on L-LMICs.

13.
J Eng Mater Technol ; 143(4): 041006, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35832730

RESUMO

Dental interfaces are subject to mixed-mode loading. This study provides practical guidance for determining interfacial fracture toughness of dental ceramic systems. We address interfacial fracture of a composite resin cement sandwiched between two dental ceramic materials. Emphasis is placed on sandwich disc specimens with cracks originating from elliptical-shaped flaws near the center, for which analytical fracture mechanics methods fail to predict. The interaction integral method is used to provide accurate finite element solutions for cracks with elliptical-shaped flaws in a Brazil-nut-sandwich specimen. The developed model was first validated with existing experimental data and then used to evaluate the three most widely used dental ceramic systems: polycrystalline ceramics (zirconia), glass-ceramics (lithium disilicate), and feldspathic ceramics (porcelain). Contrary to disc specimens with ideal cracks, those with cracks emanating from elliptical-shaped flaws do not exhibit a monotonic increase in interfacial toughness. Also, interfacial fracture toughness is seen to have a direct relationship with the aspect ratio of elliptical-shaped flaws and an inverse relationship with the modulus ratio of the constituents. The presence of an elliptical-shaped flaw significantly changes the interfacial fracture behavior of sandwich structures. Semi-empirical design equations are provided for fracture toughness and stress intensity factors for interfacial cracks. The developed design equations provide practical guidance for determining interfacial fracture toughness of selected dental ceramic material systems. Those equations take into account four critical factors: size of the elliptical flaw, modulus ratio of constituent materials, loading angle, and applied load.

14.
J Mech Behav Biomed Mater ; 121: 104604, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087550

RESUMO

The aim of this study was to evaluate the effect of in-lab simulation procedures performed on a lithium disilicate ceramic luted to a dentin-analogue material regarding the fatigue performance and topographic changes. Lithium disilicate ceramic (IPS e.max CAD) discs (Ø = 13.5 mm and 1.5 mm of thickness) were produced in different ways: milled in a CAD/CAM system (CAD/CAM - control group); mirror-polished (POL group); produced in-lab and ground with #60 silicon carbide paper (SiC group); with #60 wood sandpaper (WS group); with a fine diamond bur (DB group); or with a CAD/CAM bur adapted in a handpiece with a custom mandrel (MANDREL group). The ceramic discs were adhesively luted (Multilink N) onto dentin analogue discs (Ø = 12 mm and 2 mm of thickness) and fatigue testing (n = 19 discs) was performed by step-stress methodology (initial load of 200 N; step-size of 50 N; 10,000 cycles per step; 20 Hz). Surface roughness and contact angle analysis were also performed. According to Kaplan-Meier and post-hoc Mantel-Cox (log-rank), distinct fabrication methods affected the fatigue performance of bonded glass-ceramic discs (p< 0.001). The CAD/CAM group presented the lowest fatigue failure loads (1250 N) and number of cycles for failure (185,000), while the POL groups obtained the highest results (1752 N; 284,444 cycles). The in-lab groups had intermediate values (1355 - 1526 N; 206,052 - 238,684 cycles). Polished specimens presented the lowest roughness values (Ra = 0.041 µm), while the SiC (1.604 µm), WS (1.701 µm), and MANDREL (1.867 µm) groups showed statistically similar roughness values to the CAD/CAM group (1.738 µm). Despite differences before etching, the contact angle was similar among the milled and simulated groups after etching, except for the polished group. Even with some topographic similarities, the tested in-lab simulation methods were not able to mimic the milled specimens in terms of fatigue findings, leading to distinct magnitude of overestimations of the results.


Assuntos
Cerâmica , Desenho Assistido por Computador , Porcelana Dentária , Análise do Estresse Dentário , Teste de Materiais , Propriedades de Superfície
15.
J Clin Exp Dent ; 13(11): e1089-e1095, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824694

RESUMO

BACKGROUND: The objective of this in vitro study was to evaluate the effect of the active application of self-etching ceramic primer (ME&P) on the bond strength of different dental CAD/CAM materials (Lithium Disilicate ceramic (LD), Leucite ceramic (LE), Zirconia reinforced lithium silicate ceramic (ZLS), and Hybrid ceramic (HC)) with thermocycling aging. MATERIAL AND METHODS: The samples were randomly divided into 16 groups (n = 20). Dual resin cement cylinders were made and light cured for 10 s (1.200 mW/cm2) for the shear bond strength test. 3-way ANOVA revealed that the factors were statistically significant (P< 0.05). RESULTS: The aging process had a negative impact on the bond strength for all groups except for Lithium Disilicate, with active application. ZLS and LE showed promising results with high bond strength values for the ME&P active application; however, after aging the bond strength value was significantly reduced. HC showed reduced bond strength values regardless the ME&P application. CONCLUSIONS: In order to obtain a durable bond strength, the recommended protocol of 20 s of active application followed by 40 s of sitting time in the self-etching ceramic primer should be followed when using reinforced-glass ceramics as restorative materials. Key words:Dentistry, dental materials, silane, shear strength, computer-aided design.

16.
J Adv Prosthodont ; 13(6): 385-395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003554

RESUMO

PURPOSE: To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS: Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS: All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION: Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

17.
Materials (Basel) ; 14(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361443

RESUMO

The loss of dental structure caused by endodontic treatment is responsible for a decrease in tooth resistance, which increases susceptibility to fracture. Therefore, it is important that minimally invasive treatments be performed to preserve the dental structure and increase the resistance to fracture of endodontically treated posterior teeth. To evaluate under axial loads, using the finite element method, the stress distribution in endodontically treated molars restored with both transfixed or vertical glass fiber posts (GFP) and resin composite. An endodontically treated molar 3D-model was analyzed using finite element analyses under four different conditions, class II resin composite (G1, control model), vertical glass fiber post (G2), transfixed glass fiber posts (G3) and vertical and transfixed glass fiber posts (G4). Ideal contacts were considered between restoration/resin composite and resin composite/tooth. An axial load (300 N) was applied to the occlusal surface. The resulting tensile stresses were calculated for the enamel and dentin tissue from five different viewports (occlusal, buccal, palatal, mesial and distal views). According to the stress maps, similar stress trends were observed, regardless of the glass fiber post treatment. In addition, for the G1 model (without GFP), a high-stress magnitude can be noticed in the proximal faces of enamel (7.7 to 14 MPa) and dentin (2.1 to 3.3 MPa) tissue. The use of transfixed glass fiber post is not indicated to reduce the stresses, under axial loads, in both enamel and dentin tissue in endodontically treated molar with a class II cavity.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33528455

RESUMO

The purpose of this study was to evaluate the cleaning and surface treatment techniques in the repair of aged and contaminated yttrium oxide-stabilized tetragonal polycrystalline zirconia (Y-TZP). From a total of 80 specimens of Y-TZP, 60 were subjected to aging simulation in a buccal environment with degradation in an autoclave for 24 hours (127°C/1.5 bar) and contaminated with Streptococcus mutans. The surfaces were cleaned with a triple syringe (air/water jet; n = 20) or isopropyl alcohol (n = 20), or by prophylaxis (n = 20) with pumice and water. The remaining 20 specimens comprised the control group. All specimens were then treated with silicatization (n = 10 per group) or adhesive (n = 10 per group) and repaired with composite resin. Analyses of shear strength, failure mode, and roughness were performed by electron microscopy. Data were analyzed by two-way analysis of variance (ANOVA) and t test (α = .05). Statistical significance was set at P < .05. Two-way ANOVA was significant for aging and surface treatments (P = .049), but was not significant for surface cleaning (P = .05). ANOVA results were statistically significant for surface treatments (P < .0001), with higher resistance for the silicatization groups. The failure mode was mostly adhesive for all specimens. The roughness was not significant for aging and control groups (P > .05). Triple-syringe and prophylaxis cleansing followed by silicatization was the most efficient treatment for the repair of aged and contaminated Y-TZP. There is reduced repair efficiency with the aging of Y-TZP.


Assuntos
Resinas Compostas , Colagem Dentária , Idoso , Protocolos Clínicos , Análise do Estresse Dentário , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície , Ítrio , Zircônio
19.
Front Public Health ; 9: 794673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211453

RESUMO

Objectives: Even though several effective vaccines are available to combat the COVID-19 pandemic, wide disparities in vaccine distribution, and vaccine acceptance rates between high- and low-income countries appear to be major threats toward achieving population immunity. Our global descriptive study aims to inform policymakers on factors affecting COVID-19 vaccine acceptance among healthcare workers (HCWs) in 12 countries, based on income index. We also looked for possible predictors of vaccine acceptance among the study sample. Methods: A structured questionnaire prepared after consultation with experts in the field and guided by the "Report of the SAGE working group on vaccine hesitancy" was administered among 2,953 HCWs. Upon obtaining informed consent, apart from demographic information, we collected information on trust in vaccines and health authorities, and agreement to accept a COVID-19 vaccine. Results: Although 69% of the participants agreed to accept a vaccine, there was high heterogeneity in agreement between HCWs in low and lower-middle income countries (L-LMICs) and upper-middle- and high-income countries (UM-HICs), with acceptance rates of 62 and 75%, respectively. Potential predictors of vaccine acceptance included being male, 50 years of age or older, resident of an UM-HIC, updating self about COVID-19 vaccines, greater disease severity perception, greater anxiety of contracting COVID-19 and concern about side effects of vaccines. Conclusions: COVID-19 vaccine acceptance among HCWs in L-LMICs was considerably low as compared to those from UM-HICs. The lowest vaccine acceptance rates were among HCWs from the African continent. This underlines the need for the implementation of country-specific vaccine promotion strategies, with special focus on increasing vaccine supply in L-LMICs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Estudos Transversais , Pessoal de Saúde , Humanos , Masculino , Pandemias , SARS-CoV-2 , Inquéritos e Questionários
20.
J Mech Behav Biomed Mater ; 102: 103482, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31655337

RESUMO

This study aimed to evaluate the effects of low temperature degradation (LTD) on commercial dental zirconias (conventional and high-translucent - HT) with different microstructures, as well as on their mechanical properties and t-m phase transformation. The amount of monoclinic zirconia in different depths was quantified using X-ray diffraction (XRD) with different anode tubes (Cr, Co and Cu). XRD was also used to measure the residual stress of the materials at 0 h, 26 h and 140 h aging times. Vickers microhardness and biaxial flexural strength tests were performed. Data were subjected to two-way ANOVA and Tukey's post-hoc test, both with α = 0.05 for means comparisons. Weibull parameters were calculated and compared based on the overlapping of confidence intervals (CI = 95%). HT Zirconia presented smaller grain sizes and had a higher rate of t-m transformation over time. The microstructure of the conventional zirconia showed an expressive increase of the grain size and consequently greater morphological variation with the LTD. The non-aged samples (control) did not present any residual stress and the aged ones presented compression stress. All zirconia showed a residual stress increase with the increase of LTD time, but the conventional one showed a decrease after 140 h. HT zirconia showed no significant change in flexural strength over LTD time, but the conventional one showed a strength decrease after 140 h (681.78 ±â€¯121.18 MPa). Vickers hardness decreased for all zirconia samples after 26 h. The mechanics of LTD is significantly altered in different zirconia microstructures. Zirconias with smaller grains are more prone to t-m phase transformation, but present lower variation of residual stress, while larger grains zirconias have a lower surface area and therefore a more pronounced increase in stress over LTD time. Stress values close to the maximum compression stress generates ejection of the zirconia grains, producing defects and causing reduction of the compression stress and consequently decrease of flexural strength.


Assuntos
Cerâmica , Ítrio , Materiais Dentários , Análise do Estresse Dentário , Cinética , Teste de Materiais , Propriedades de Superfície , Difração de Raios X , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA