Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Parasitology ; 150(13): 1207-1220, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38084628

RESUMO

Multiple parasites can infect a single host, creating a dynamic environment where each parasite must compete over host resources. Such interactions can cause greater harm to the host than single infections and can also have negative consequences for the parasites themselves. In their first intermediate hosts, trematodes multiply asexually and can eventually reach up to 20% of the host's biomass. In most species, it is unclear whether this biomass results from a single infection or co-infection by 2 or more infective stages (miracidia), the latter being more likely a priori in areas where prevalence of infection is high. Using as model system the trematode Bucephalus minimus and its first intermediate host cockles, we examined the genetic diversity of the cytochrome c oxidase subunit I region in B. minimus from 3 distinct geographical areas and performed a phylogeographic study of B. minimus populations along the Northeast Atlantic coast. Within localities, the high genetic variability found across trematodes infecting different individual cockles, compared to the absence of variability within the same host, suggests that infections could be generally originating from a single miracidium. On a large spatial scale, we uncovered significant population structure of B. minimus, specifically between the north and south of Bay of Biscay. Although other explanations are possible, we suggest this pattern may be driven by the population structure of the final host.


Assuntos
Cardiidae , Parasitos , Trematódeos , Animais , Interações Hospedeiro-Parasita , Trematódeos/genética , Filogeografia , Cardiidae/parasitologia
2.
Parasitology ; 150(11): 1015-1021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705257

RESUMO

In recent field studies, suspected gymnophallid metacercariae were histologically located in the mantle of mussels from the Norwegian Sea. Mussels from the sites in which that infection was detected also presented abnormally high pearl numbers. It has been previously described that gymnophallid metacercariae could cause pearl formation processes in mussels, as a host reaction to encapsulate these metacercariae. Given the pathological host reaction these parasites elicit, a study was performed to identify gymnophallid metacercariae found in mussels collected from Tromsø at morphological and molecular level and to assess, by the use of molecular tools, the relationship between the parasite and the biological material inside the pearls. As a result, Gymnophallus bursicola metacercariae infecting Norwegian Mytilus edulis were identified according to morphological characters, along with the first 18S rDNA and COI sequences for this trematode species. In addition, parasite DNA from the core of the pearls was extracted and amplified for the first time, confirming the parasitological origin of these pearls. This procedure could allow identifying different parasitic organisms responsible for the generation of pearls in bivalves.


Assuntos
Mytilus edulis , Mytilus , Trematódeos , Animais , Mytilus edulis/parasitologia , Metacercárias/genética , Trematódeos/genética , Trematódeos/anatomia & histologia , DNA Ribossômico/genética
3.
J Invertebr Pathol ; 184: 107603, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971219

RESUMO

The aetiological agent Perkinsus olseni is globally recognised as a major threat for shellfish production considering its wide geographical distribution across Asia, Europe, Australia and South America. Another species, Perkinsus chesapeaki, which has never been known to be associated with significant mortality events, was recently detected along French coasts infecting clam populations sporadically in association with P. olseni. Identifying potential cryptic infections affecting Ruditapes philippinarum is essential to develop appropriate host resource management strategies. Here, we developed a molecular method based on duplex real-time quantitative PCR for the simultaneous detection of these two parasites, P. olseni and P. chesapeaki, in the different clam tissues: gills, digestive gland, foot, mantle, adductor muscle and the rest of the soft body. We firstly checked the presence of possible PCR inhibitors in host tissue samples. The qPCR reactions were inhibited depending on the nature of the host organ. The mantle and the rest of the soft body have a high inhibitory effect from threshold of host gDNA concentration of 2 ng.µL-1, the adductor muscle and the foot have an intermediate inhibition of 5 ng.µL-1, and the gills and digestive gland do not show any inhibition of the qPCR reaction even at the highest host gDNA concentration of 20 ng.µL-1. Then, using the gills as a template, the suitability of the molecular technique was checked in comparison with the Ray's Fluid Thioglycolate Medium methodology recommended by the World Organisation for Animal Health. The duplex qPCR method brought new insights and unveiled cryptic infections as the co-occurrence of P. olseni and P. chesapeaki from in situ tissue samples in contrast to the RFTM diagnosis. The development of this duplex qPCR method is a fundamental work to monitor in situ co-infections that will lead to optimised resource management and conservation strategies to deal with emerging diseases.


Assuntos
Alveolados/isolamento & purificação , Bivalves/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alveolados/genética , Animais , Especificidade da Espécie
4.
Dis Aquat Organ ; 146: 23-28, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498607

RESUMO

The cockle Cerastoderma edule, a socioeconomically important bivalve of the northeast Atlantic, is host to several trematodes, including Himasthla elongata. In the life cycle of this trematode, cercariae (free-living stages) emerge from the first intermediate host, a snail, to infect cockles as second intermediate hosts. During their lifespan (less than 2 d), cercariae must ensure successful host-to-host transmission via the surrounding water and therefore are exposed to and impacted by different environmental conditions, including abiotic factors. Given that the light:dark cycle is one of the major drivers of behaviour in aquatic habitats, we aimed to determine the influence of light on cercariae and host behaviour based on 3 hypotheses. First, by having a benthic second intermediate host, these cercariae will display a photonegative orientation; second, and conversely, host behaviour will not be influenced by light; and third, cercariae infection success will be light-dependent. Results showed that cercariae display a photopositive orientation (first hypothesis rejected), displaying movements towards light. Host activity (evaluated by oxygen consumption) was similar among conditions, i.e. dark vs. light (second hypothesis accepted), but hosts acquired more parasites when experimentally infected in the dark (third hypothesis accepted). This light-dependent infection of the host is explained by a change of cercarial behaviour when exposed to light, decreasing their infection success. This study highlights that trematode responses to external conditions may be linked to successful life cycle completion rather than being altered by the host habitat. Light influence on cercarial behaviour resulted in increased infection success that may affect trematode population dynamics and their distributional range.


Assuntos
Bivalves , Cardiidae , Trematódeos , Infecções por Trematódeos , Animais , Cercárias , Interações Hospedeiro-Parasita , Caramujos , Infecções por Trematódeos/veterinária
5.
J Anim Ecol ; 89(9): 2192-2205, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271950

RESUMO

Although parasites represent a substantial part of marine communities' biomass and diversity, their influence on ecosystem functioning, especially via the modification of host behaviour, remains largely unknown. Here, we explored the effects of the bopyrid ectoparasite Gyge branchialis on the engineering activities of the thalassinid crustacean Upogebia pusilla and the cascading effects on intertidal ecosystem processes (e.g. sediment bioturbation) and functions (e.g. nutrient regeneration). Laboratory experiments revealed that the overall activity level of parasitized mud shrimp is reduced by a factor 3.3 due to a decrease in time allocated to burrowing and ventilating activities (by factors 1.9 and 2.9, respectively). Decrease in activity level led to strong reductions of bioturbation rates and biogeochemical fluxes at the sediment-water interface. Given the world-wide distribution of mud shrimp and their key role in biogeochemical processes, parasite-mediated alteration of their engineering behaviour has undoubtedly broad ecological impacts on marine coastal systems functioning. Our results illustrate further the need to consider host-parasite interactions (including trait-mediated indirect effects) when assessing the contribution of species to ecosystem properties, functions and services.


Assuntos
Decápodes , Isópodes , Parasitos , Animais , Ecossistema , Interações Hospedeiro-Parasita
6.
Parasitology ; 147(6): 643-658, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127062

RESUMO

The most deleterious stage of a trematode life cycle occurs in the first intermediate host where the parasite penetrates as a miracidium and asexually multiplicates in sporocysts or rediae. When infection advances, other organs can be occupied with severe effects on host individual health and population dynamics. Existing studies focused on these host/parasite systems are still scarce due to the usual low prevalence in ecosystems. Using cockles (Cerastoderma spp.) and two trematode species (Monorchis parvus and Gymnophallus choledochus) infecting these bivalves as first and second intermediate host, the present work aimed to (1) summarize the most relevant literature and (2) provide new information regarding this host/parasite system, taking advantage of a 21-year monthly database from Banc d'Arguin (France). This long-term monitoring showed that different trematode species display varying host size range preference (6-38 and 31-36 mm for M. parvus and G. choledochus, respectively). The occurrence of coinfection was lower than expected, raising some questions related to parasite interspecific competition. This review improved our understanding of the processes shaping the prevalence and distribution of parasitism. This study highlighted that beyond constant trematode assemblage monitoring, there is a need to identify the main predictors of rediae/sporocysts infection, such as the definitive host dynamics and miracidium infection processes, for future better management of host severe disease and mortality episodes.


Assuntos
Cardiidae/parasitologia , Interações Hospedeiro-Parasita , Trematódeos/fisiologia , Animais , França
7.
J Invertebr Pathol ; 177: 107479, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33039398

RESUMO

Bivalve stocks have been decreasing in the last decades largely due to emergent diseases and consequent mass mortality episodes. Cerastoderma edule (the edible cockle) is one of the most exploited bivalves in Europe and is among the most common hosts for trematodes, the most prevalent macroparasites in coastal waters but yet poorly studied. Therefore, in the present study, this bivalve species was used as host model to determine if trematode infection exerts a negative effect on bivalve energy metabolism and balance and if the tissues targeted by different trematodes influence the metabolic cost, with physiological and biochemical consequences. Cockles were experimentally infected with two trematode species, Himasthla elongata and Renicola roscovitus, that infect the foot and palps, respectively. Trematode infection exerted a negative effect on the metabolism of C. edule, the second intermediate host, by reduction of oxygen consumption. A different host biochemical response was found depending on trematode species, especially in regard to the level of oxygen consumption decrease and the preferential accumulation of lipids and glycogen. This study represents a step towards the understanding of host-trematode relationships that can be used to better predict potential conservation threats to bivalve populations and to maximize the success of stock and disease management.


Assuntos
Cardiidae/parasitologia , Interações Hospedeiro-Parasita , Metacercárias/fisiologia , Trematódeos/fisiologia , Animais , Metacercárias/crescimento & desenvolvimento , Especificidade da Espécie , Trematódeos/crescimento & desenvolvimento
8.
Parasitol Res ; 118(1): 363-367, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30465072

RESUMO

Parasites are widespread in natural environments, and their impacts on the fitness of their host and, at a broader scale, on ecosystem functioning are well recognized. Over the last two decades, there has been an increasing interest in the effects of parasites in conjunction with other stressors, especially pollutants, on the health of organisms. For instance, parasites can interfere with the bioaccumulation process of contaminants in their host leading to parasitized organisms exhibiting lower pollutants burdens than unparasitized individuals for example. However, the mechanisms underlying these patterns are not well understood. This study examined how the bopyrid parasite Gyge branchialis could lower the cadmium (Cd) uptake of its mud shrimp host Upogebia cf. pusilla. When exposed to water-borne Cd, parasites were able to bioaccumulate this trace metal. However, the uptake of Cd by the parasite was low and cannot entirely explain the deficit of Cd contamination of the host. The weight of gills of parasitized organisms was significantly reduced compared with unparasitized organisms. We suggest that by reducing the surface for metal uptake, parasites could lower the contaminant burden of their host.


Assuntos
Cádmio/metabolismo , Decápodes/metabolismo , Decápodes/parasitologia , Isópodes/metabolismo , Parasitos/metabolismo , Animais , Cádmio/análise , Decápodes/crescimento & desenvolvimento , Brânquias/crescimento & desenvolvimento , Brânquias/parasitologia , Oligoelementos/análise , Oligoelementos/metabolismo
9.
Environ Res ; 164: 114-123, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29486342

RESUMO

Cerastoderma edule (edible cockle) is among the most exploited bivalves in Europe playing an important socio-economic role. Cockles live in estuaries and lagoons where their population is controlled by several environmental factors including parasitism. Parasites represent an important part of the world known biodiversity but are often neglected. Trematodes are the most prevalent macroparasites of cockles being able to exert an impact both at the individual and population levels. Therefore, it is of prime relevance to recognize and understand the parasite-host system dynamics in order to better predict potential conservation threats to bivalve populations and to maximize the success of stock and disease episodes management. Cockle monitoring was conducted in 2012 and 2016, in six and eight stations, respectively, at the Ria de Aveiro coastal lagoon, Portugal. Cockles were sampled in one single occasion in 2012 and seasonally in 2016. The tested hypothesis is that the trematode community in cockles was spatially and seasonally heterogeneous but stable over time. The main result showed that despite a relative homogeneity of the parasite community structure in cockles, the among-years heterogeneity of trematode communities was higher than among-stations and among-seasons heterogeneity rejecting the postulated hypothesis. Results demonstrated that trematode communities from the Ria de Aveiro are characterized by low abundance, which resulted in a spatial and seasonal trematode homogeneity (despite an overall channel difference and a slight downstream-upstream gradient). The interannual analysis showed a worrisome loss of trematode diversity and prevalence which consequently indicates an important loss of overall diversity and/or environmental conditions reflecting the negative effects of global change (mean temperature rise and overharvesting, among others). The present study highlighted the importance of trematodes in characterising their associated environment and respective biodiversity which might be helpful to assess ecosystem ecological status and to identify threatened areas.


Assuntos
Cardiidae , Parasitos , Trematódeos , Animais , Europa (Continente) , Interações Hospedeiro-Parasita , Portugal
11.
J Invertebr Pathol ; 148: 73-80, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28579009

RESUMO

Bivalve populations are controlled by several biotic and abiotic factors. Parasitism is among the biotic factors but is often neglected. In the present study, we focused on the transcriptomic and biochemical responses of Cerastoderma edule when parasitized as first intermediate host by the trematode Bucephalus minimus (sporocyst, the most damaging stage), and taking into account seasonal patterns. In order to test the hypothesis that the presence of B. minimus compromises cockle regular gene expression and biochemical performance and increases their vulnerability to other parasite species infection, cockles were sampled every other month during one year in Arcachon Bay (French Atlantic coast). Overall, results showed that B. minimus induced its first intermediate host defence mechanism against oxidative stress (mainly at gene level), increased host metabolism and energy demand especially in summer (revealed at both gene and biochemical level, although without significant differences) and was accompanied by a higher metacercariae abundance. Results allowed to accept the posted hypothesis and to conclude that transcriptomic and biochemical markers can provide additional and ecologically relevant information about parasite effects on their hosts, reflecting the invasion effects of pathogens but also the environmental conditions that animals experience.


Assuntos
Cardiidae/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Animais , Estações do Ano , Transcriptoma
12.
Microb Ecol ; 71(1): 194-206, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26311127

RESUMO

Marine invertebrate microbiota has a key function in host physiology and health. To date, knowledge about bivalve microbiota is poorly documented except public health concerns. This study used a molecular approach to characterize the microbiota associated with the bivalve Manila clam (Ruditapes philippinarum) by determining (1) the difference among organs either or not under the influence of host habitat, (2) small-scale variability of microbiota, and (3) the experimental response of the Manila clam microbiota submitted to different lateral transmissions. These questions were investigated by sampling two groups of individuals living in contrasting habitats and carrying out a transplant experiment. Manila clam microbiota (i.e., bacterial community structure) was determined at organ-scale (gills, gut, and a pool of remaining tissues) by capillary electrophoresis DNA fingerprinting (CE fingerprinting). The Manila clam microbiota structure differed among organs indicating a selection of Manila clam microbiota at organ scale. Habitat strongly influenced gill and gut microbiota. In contrast, microbiota associated with remaining tissues was similar between group individuals suggesting that these communities are mostly autochthonous, i.e., Manila clam specific. Transplant experiment showed that improving living condition did not induce any change in microbiota associated with remaining tissues. In contrast, the reduction in individual habitat quality led to individuals in declining health as strongly suggested by the increase in phagocytosis activity and decrease in condition index together with the change in internal organ microbiota. This study provides a first description of the Manila clam holobiont which can withstand disturbance and respond opportunistically to improved environmental conditions.


Assuntos
Estruturas Animais/microbiologia , Bactérias/isolamento & purificação , Bivalves/microbiologia , Microbiota , Frutos do Mar/microbiologia , Animais , Bactérias/classificação , Bactérias/genética
13.
Fish Shellfish Immunol ; 36(2): 510-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24378680

RESUMO

This study assessed the effect of Brown Muscle Disease (BMD) on Manila clam Venerupis philippinarum fitness. BMD was discovered in 2005. It affects the posterior adductor muscle and leads to clam gaping and eventually death. Three statuses of clams were compared: buried individuals with no signs of BMD (BUR); clams at the surface of the sediment with no signs of BMD (SURF) and clams at the surface of the sediment exhibiting signs of brown muscle disease (BMD). Physiological (condition index), immune (hemocyte parameters) and molecular (gene expressions) parameters collected seasonally were analyzed and compared. Results demonstrated a seasonal pattern in condition index (CI) with peaks in spring/summer and decreases in autumn/winter. At each season, the highest CI was observed in BUR and the lowest CI was observed in BMD. In terms of immune response, phagocytosis rate and capacity were higher in clams with BMD whereas the health status of the clams did not influence the total hemocyte count. Genes involved in the immune system (comp, tnf, inter) were upregulated in clams with BMD. The molecular analysis of gill and posterior muscle showed higher mitochondrial metabolism (cox-1, 16S) in cells of infected clams, suggesting a stronger energetic demand by these cells. Finally, genes involved in oxidative stress response (cat, sod), detoxification (mt) and DNA repair (gadd45) were also overexpressed due to reactive oxygen species production. Most of the studied parameters underlined a cause-effect correlation between Manila clam health status (BUR, SUR, BMD) and physiological parameters. An important stress response was observed in BMD-infected clams at different scales, i.e. condition index, immune parameters and stress-related gene expression.


Assuntos
Bivalves/fisiologia , Regulação da Expressão Gênica , Alveolados/fisiologia , Animais , Bivalves/genética , Bivalves/imunologia , Bivalves/parasitologia , Composição Corporal , França , Sedimentos Geológicos , Brânquias/parasitologia , Brânquias/patologia , Hemócitos/parasitologia , Hemócitos/patologia , Imunidade Inata , Músculos/parasitologia , Músculos/patologia , Estações do Ano
14.
Dis Aquat Organ ; 111(3): 259-67, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25320038

RESUMO

Wedge clams Donax trunculus inhabit high-energy environments along sandy coasts of the northeastern Atlantic Ocean and the Mediterranean Sea. Two sites were sampled monthly, one in Morocco (Mehdia), where the density was normal, and one in France (Biscarosse), where the density was very low. We tested the hypothesis that the difference in density between the sites was related to infection by the trematode parasite Bacciger bacciger. Identity of both the parasite and the host were verified using anatomical and molecular criteria. Parasite prevalence (i.e. the percentage of parasitized clams) was almost 3 times higher at Biscarosse. At this site, overall prevalence reached 32% in July and was correlated with the migration of several individuals (with a prevalence of 88%) to the sediment surface. After this peak, prevalence decreased rapidly, suggesting death of parasitized clams. The deleterious effect of B. bacciger on wedge clams was also supported by our calculations indicating that the weight of the parasite made up to 56% of the total weight of the parasitized clams. However, condition indices of trematode-free clams were also lower in Biscarosse than in Mehdia or other sites, suggesting that other factors such as pollutants or microparasites (Microcytos sp.) may alter wedge clam population fitness in Biscarosse.


Assuntos
Bivalves/parasitologia , Trematódeos/fisiologia , Distribuição Animal , Animais , França , Interações Hospedeiro-Parasita , Marrocos , Filogenia , Densidade Demográfica , RNA Ribossômico 18S/genética , Trematódeos/genética
15.
Dis Aquat Organ ; 106(3): 255-65, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24192002

RESUMO

Perkinsosis is one of the most widespread diseases affecting commercially important species of molluscs globally. We examined the impact of Perkinsus spp. on shell growth at the individual scale in 2 clam species: Ruditapes decussatus from Mundaka Estuary (Spain) and R. philippinarum from Arcachon Bay (France). At Arcachon, 2 contrasting sites in terms of environment and Perkinsus olseni presence were chosen: Arguin (disease-free) and Ile aux Oiseaux (infected site). We monitored the dynamics of perkinsosis over the course of the experiment at Mundaka and Ile aux Oiseaux. Prevalences were high (>70%), and intensities were around 105 cells g-1 wet gills at Ile aux Oiseaux, and 106 cells g-1 at Mundaka. No significant differences in prevalence or intensity were observed over time. A 2 yr field growth experiment of tagged-recaptured clams was performed to determine individual clam growth rate, condition index (CI), and Perkinsus spp. infection intensity. Clams were collected at Ile aux Oiseaux and transplanted to Arguin. The growth rate was always significantly and negatively correlated with Perkinsus spp. infection, and positively correlated with CI. CI and Perkinsus spp. infection explained 19% and 7% of the variability of the growth rate at Mundaka and Ile aux Oiseaux, respectively. In experimental clams at Arguin, P. olseni infection explained 26% of the variability of the growth rate at the lower tidal level. Our results suggest that at a concentration of between 105 and 106 cells g-1, perkinsosis affects the physiological functions of the clams, highlighted by its impact on the growth rate.


Assuntos
Bivalves/parasitologia , Eucariotos/fisiologia , Animais , Eucariotos/isolamento & purificação , Interações Hospedeiro-Parasita , Fatores de Tempo
16.
Int J Parasitol ; 53(2): 65-68, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638879

RESUMO

Infection by parasites with complex life cycles such as trematodes depends on many environmental factors which may result in a time-lag between host biomass fluctuations and parasite density in hosts. A cockle (marine bivalve, second intermediate host) population and its associated parasite community were monitored over 15 years. A time-shift correlation analysis suggests that trematode abundance in cockles responds to cockle biomass after a long delay (8 year time-lag). Thus, these parasites can sustainably support a deficit of their intermediate host.


Assuntos
Cardiidae , Parasitos , Doenças Parasitárias , Trematódeos , Animais , Interações Hospedeiro-Parasita , Biomassa , Cardiidae/parasitologia
17.
Mar Pollut Bull ; 194(Pt A): 115278, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453288

RESUMO

The effect of sediment dredging and disposal work on benthic communities was compared according to two sampling strategies, grab (1-mm mesh) and dredge (1-cm mesh). Nine subtidal, sandy sites were selected in Arcachon Bay (French Atlantic coast), where these operations were performed during winter. Fauna was sampled several months before and one year after the dredging or disposal work. The sediments were fine to medium sands and their characteristics were not modified. In dredging sites, abundance, diversity and community structure of grab sampled fauna were minimally affected by the activities, while abundance and community structure displayed significant changes for dredge sampled fauna. In disposal sites, there was no work effect on fauna, although environmental conditions changed, especially when initial sediments were covered by mussels or seagrass. This study suggests that dredge sampling can be an alternative to grab sampling for monitoring changes related to dredging in sandy shallow channels.


Assuntos
Bivalves , Sedimentos Geológicos , Animais , Sedimentos Geológicos/química , Monitoramento Ambiental , Areia
18.
Front Microbiol ; 14: 1250947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260876

RESUMO

The parasitic species Perkinsus olseni (= atlanticus) (Perkinsea, Alveolata) infects a wide range of mollusc species and is responsible for mortality events and economic losses in the aquaculture industry and fisheries worldwide. Thus far, most studies conducted in this field have approached the problem from a "one parasite-one disease" perspective, notably with regards to commercially relevant clam species, while the impact of other Perkinsus species should also be considered as it could play a key role in the disease phenotype and dynamics. Co-infection of P. olseni and P. chesapeaki has already been sporadically described in Manila clam populations in Europe. Here, we describe for the first time the parasitic distribution of two Perkinsus species, P. olseni and P. chesapeaki, in individual clam organs and in five different locations across Arcachon Bay (France), using simultaneous in situ detection by quantitative PCR (qPCR) duplex methodology. We show that P. olseni single-infection largely dominated prevalence (46-84%) with high intensities of infection (7.2 to 8.5 log-nb of copies. g-1of wet tissue of Manila clam) depending on location, suggesting that infection is driven by the abiotic characteristics of stations and physiological states of the host. Conversely, single P. chesapeaki infections were observed in only two sampling stations, Ile aux Oiseaux and Gujan, with low prevalences 2 and 14%, respectively. Interestingly, the co-infection by both Perkinsus spp., ranging in prevalence from 12 to 34%, was distributed across four stations of Arcachon Bay, and was detected in one or two organs maximum. Within these co-infected organs, P. olseni largely dominated the global parasitic load. Hence, the co-infection dynamics between P. olseni and P. chesapeaki may rely on a facilitating role of P. olseni in developing a primary infection which in turn may help P. chesapeaki infect R. philippinarum as a reservoir for a preferred host. This ecological study demonstrates that the detection and quantification of both parasitic species, P. olseni and P. chesapeaki, is essential and timely in resolving cryptic infections and their consequences on individual hosts and clam populations.

19.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783803

RESUMO

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Assuntos
Bivalves , Cardiidae , Leucemia , Neoplasias , Animais , Humanos , Cardiidae/genética , Evolução Clonal
20.
Ecotoxicol Environ Saf ; 75(1): 119-26, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21963253

RESUMO

Metallothionein (MT) genes encode crucial metal-binding proteins ubiquitously expressed in living organisms and which play important roles in homeostasis of essential metals and detoxification processes. Here, the molecular organization of the first metallothionein gene of the edible cockle Cerastoderma edule and its expression after cadmium (Cd) or mercury (Hg) exposures were determined. The resulting sequence (Cemt1) exhibits unusual features. The full length cDNA encodes a protein of 73 amino acids with nine classical Cys-X((1-3))-Cys motifs, but also one Cys-Cys not generally found in molluscan MT. Moreover, characterization of the molecular organization of the Cemt1 gene revealed two different alleles (A1 and A2) with length differences due to large deletion events in their intronic sequences involving direct Short Interspersed repeated Elements (SINE), while their exonic sequences were identical. To our knowledge, such large excision mechanisms have never before been reported in a bivalve gene sequence. After 10 days of Cd exposure at environmentally relevant doses, quantitative real-time PCR revealed a strong induction of Cemt1 in gills of C. edule. Surprisingly, neither induction of the Cemt1 gene nor of MT protein was shown after Hg exposure, despite the fact that this organism is able to bioaccumulate a high amount of this trace metal which is theoretically one of the most powerful inducers of MT biosynthesis.


Assuntos
Cádmio/toxicidade , Cardiidae/efeitos dos fármacos , Mercúrio/toxicidade , Metalotioneína/genética , Poluentes Químicos da Água/toxicidade , Sequência de Aminoácidos , Animais , Sequência de Bases , Cardiidae/genética , Cardiidae/metabolismo , DNA Complementar/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , Expressão Gênica/efeitos dos fármacos , Metalotioneína/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA