RESUMO
The fossil record of cetaceans documents how terrestrial animals acquired extreme adaptations and transitioned to a fully aquatic lifestyle1,2. In whales, this is associated with a substantial increase in maximum body size. Although an elongate body was acquired early in cetacean evolution3, the maximum body mass of baleen whales reflects a recent diversification that culminated in the blue whale4. More generally, hitherto known gigantism among aquatic tetrapods evolved within pelagic, active swimmers. Here we describe Perucetus colossus-a basilosaurid whale from the middle Eocene epoch of Peru. It displays, to our knowledge, the highest degree of bone mass increase known to date, an adaptation associated with shallow diving5. The estimated skeletal mass of P. colossus exceeds that of any known mammal or aquatic vertebrate. We show that the bone structure specializations of aquatic mammals are reflected in the scaling of skeletal fraction (skeletal mass versus whole-body mass) across the entire disparity of amniotes. We use the skeletal fraction to estimate the body mass of P. colossus, which proves to be a contender for the title of heaviest animal on record. Cetacean peak body mass had already been reached around 30 million years before previously assumed, in a coastal context in which primary productivity was particularly high.
Assuntos
Adaptação Fisiológica , Evolução Biológica , Peso Corporal , Fósseis , Baleias , Animais , Aclimatação , Peru , Baleias/anatomia & histologia , Baleias/classificação , Baleias/fisiologia , Tamanho Corporal , Esqueleto , MergulhoRESUMO
Through phenotypic plasticity, bones can change in structure and morphology, in response to physiological and biomechanical influences over the course of individual life. Changes in bones also occur in evolution as functional adaptations to the environment. In this study, we report on the evolution of bone mass increase (BMI) that occurred in the postcranium and skull of extinct aquatic sloths. Although non-pathological BMI in postcranial skeleton has been known in aquatic mammals, we here document general BMI in the skull for the first time. We present evidence of thickening of the nasal turbinates, nasal septum and cribriform plate, further thickening of the frontals, and infilling of sinus spaces by compact bone in the late and more aquatic species of the extinct sloth Thalassocnus Systemic bone mass increase occurred among the successively more aquatic species of Thalassocnus, as an evolutionary adaptation to the lineage's changing environment. The newly documented pachyostotic turbinates appear to have conferred little or no functional advantage and are here hypothesized as a correlation with or consequence of the systemic BMI among Thalassocnus species. This could, in turn, be consistent with a genetic accommodation of a physiological adjustment to a change of environment.
Assuntos
Adaptação Biológica , Evolução Biológica , Densidade Óssea , Características de História de Vida , Bichos-Preguiça/fisiologia , Animais , Organismos Aquáticos/fisiologia , PeruRESUMO
The vast majority of Mesozoic and early Cenozoic metatherian mammals (extinct relatives of modern marsupials) are known only from partial jaws or isolated teeth, which give insight into their probable diets and phylogenetic relationships but little else. The few skulls known are generally crushed, incomplete or both, and associated postcranial material is extremely rare. Here we report the discovery of an exceptionally large number of almost undistorted, nearly complete skulls and skeletons of a stem-metatherian, Pucadelphys andinus, in the early Palaeocene epoch of Tiupampa in Bolivia. These give an unprecedented glimpse into early metatherian morphology, evolutionary relationships and, especially, ecology. The remains of 35 individuals have been collected, with 22 of these represented by nearly complete skulls and associated postcrania. These individuals were probably buried in a single catastrophic event, and so almost certainly belong to the same population. The preservation of multiple adult, sub-adult and juvenile individuals in close proximity (<1 m(2)) is indicative of gregarious social behaviour or at least a high degree of social tolerance and frequent interaction. Such behaviour is unknown in living didelphids, which are highly solitary and have been regarded, perhaps wrongly, as the most generalized living marsupials. The Tiupampan P. andinus population also exhibits strong sexual dimorphism, which, in combination with gregariousness, suggests strong male-male competition and polygyny. Our study shows that social interactions occurred in metatherians as early as the basal Palaeocene and that solitary behaviour may not be plesiomorphic for Metatheria as a whole.
Assuntos
Fósseis , Marsupiais/classificação , Comportamento Social , Animais , Bolívia , Feminino , Masculino , Marsupiais/anatomia & histologia , Caracteres SexuaisRESUMO
The modern giant sperm whale Physeter macrocephalus, one of the largest known predators, preys upon cephalopods at great depths. Lacking a functional upper dentition, it relies on suction for catching its prey; in contrast, several smaller Miocene sperm whales (Physeteroidea) have been interpreted as raptorial (versus suction) feeders, analogous to the modern killer whale Orcinus orca. Whereas very large physeteroid teeth have been discovered in various Miocene localities, associated diagnostic cranial remains have not been found so far. Here we report the discovery of a new giant sperm whale from the Middle Miocene of Peru (approximately 12-13 million years ago), Leviathan melvillei, described on the basis of a skull with teeth and mandible. With a 3-m-long head, very large upper and lower teeth (maximum diameter and length of 12 cm and greater than 36 cm, respectively), robust jaws and a temporal fossa considerably larger than in Physeter, this stem physeteroid represents one of the largest raptorial predators and, to our knowledge, the biggest tetrapod bite ever found. The appearance of gigantic raptorial sperm whales in the fossil record coincides with a phase of diversification and size-range increase of the baleen-bearing mysticetes in the Miocene. We propose that Leviathan fed mostly on high-energy content medium-size baleen whales. As a top predator, together with the contemporaneous giant shark Carcharocles megalodon, it probably had a profound impact on the structuring of Miocene marine communities. The development of a vast supracranial basin in Leviathan, extending on the rostrum as in Physeter, might indicate the presence of an enlarged spermaceti organ in the former that is not associated with deep diving or obligatory suction feeding.
Assuntos
Fósseis , Mandíbula/anatomia & histologia , Cachalote/anatomia & histologia , Dente/anatomia & histologia , Animais , Evolução Biológica , Mandíbula/fisiologia , Peru , Filogenia , Comportamento Predatório/fisiologia , Cachalote/classificação , Cachalote/fisiologia , Dente/fisiologia , Orca/anatomia & histologiaRESUMO
Non-pathological densification (osteosclerosis) and swelling (pachyostosis) of bones are the main modifications affecting the skeleton of land vertebrates (tetrapods) that returned to water. However, a precise temporal calibration of the acquisition of such adaptations is still wanting. Here, we assess the timing of such acquisition using the aquatic sloth Thalassocnus, from the Neogene of the Pisco Formation, Peru. This genus is represented by five species occurring in successive vertebrate-bearing horizons of distinct ages. It yields the most detailed data about the gradual acquisition of aquatic adaptations among tetrapods, in displaying increasing osteosclerosis and pachyostosis through time. Such modifications, reflecting a shift in the habitat from terrestrial to aquatic, occurred over a short geological time span (ca 4 Myr). Otherwise, the bones of terrestrial pilosans (sloths and anteaters) are much more compact than the mean mammalian condition, which suggests that the osteosclerosis of Thalassocnus may represent an exaptation.
Assuntos
Adaptação Fisiológica , Densidade Óssea/fisiologia , Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Bichos-Preguiça/anatomia & histologia , Bichos-Preguiça/fisiologia , Animais , Evolução Biológica , Ecossistema , Fósseis , PeruRESUMO
Several dolphin lineages have independently invaded freshwater systems. Among these, the evolution of the South Asian river dolphin Platanista and its relatives (Platanistidae) remains virtually unknown as fossils are scarce. Here, we describe Pebanista yacuruna gen. et sp. nov., a dolphin from the Miocene proto-Amazonia of Peru, recovered in phylogenies as the closest relative of Platanista. Morphological characters such as an elongated rostrum and large supraorbital crests, along with ecological interpretations, indicate that this odontocete was fully adapted to fresh waters. Pebanista constitutes the largest freshwater odontocete known, with an estimated body length of 3 meters, highlighting the ample resource availability and biotic diversity in the region, during the Early to Middle Miocene. The finding of Pebanista in proto-Amazonian layers attests that platanistids ventured into freshwater ecosystems not only in South Asia but also in South America, before the modern Amazon River dolphin, during a crucial moment for the Amazonian evolution.
Assuntos
Evolução Biológica , Golfinhos , Animais , Ecossistema , Filogenia , Água DoceRESUMO
We report the discovery of mammalian tribosphenic teeth from the basal Cenomanian of southwestern France that we refer to a new primitive marsupial-like form identified as a basal taxon of Marsupialiformes, a new clade recognized here to include the crown group Marsupialia and primitive stem lineages more closely related to Marsupialia than to Deltatheroida. Arcantiodelphys marchandi gen et sp nov. shares several significant marsupial-like features (s.l.) with marsupialiform taxa known from the North American Mid-Cretaceous. Among marsupialiforms, it shows a closer resemblance to Dakotadens. This resemblance, which is plesiomorphic within "tribotherians," makes Arcantiodelphys one of the most archaic known Marsupialiformes. Moreover, Arcantiodelphys is characterized by an original and precocious crushing specialization. Both the plesiomorphic and autapomorphic characteristics of Arcantiodelphys among Marsupialiformes might be explained by an Eastern origin from Asian stem metatherians, with some in situ European evolution. In addition, the presence of a mammal with North American affinities in western Europe during the early Late Cretaceous provides further evidence of a large Euramerican biogeographical province at this age or slightly before. Concerning the paleobiogeographical history of the first stem marsupialiforms during the Albian-Cenomanian interval, 2 possible dispersal routes from an Asian metatherian ancestry can be proposed: Asia to Europe via North America and Asia to North America via Europe. The main significance of the Archingeay-Les Nouillers mammal discovery is that it indicates that the beginning of the stem marsupialiforms history involved not only North America but also Europe, and that this early history in Europe remains virtually unknown.
Assuntos
Evolução Biológica , Fósseis , Mamíferos , Marsupiais , Dente/anatomia & histologia , Migração Animal , Animais , Europa (Continente) , Geografia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Marsupiais/anatomia & histologia , Marsupiais/classificação , Paleontologia , FilogeniaRESUMO
The endocranial structures of the sebecid crocodylomorph Zulmasuchus querejazus (MHNC 6672) from the Lower Paleocene of Bolivia are described in this article. Using computed tomography scanning, the cranial endocast, associated nerves and arteries, endosseous labyrinths, and cranial pneumatization are reconstructed and compared with those of extant and fossil crocodylomorphs, representative of different ecomorphological adaptations. Z. querejazus exhibits an unusual flexure of the brain, pericerebral spines, semicircular canals with a narrow diameter, as well as enlarged pharyngotympanic sinuses. First, those structures allow to estimate the alert head posture and hearing capabilities of Zulmasuchus. Then, functional comparisons are proposed between this purportedly terrestrial taxon, semi-aquatic, and aquatic forms (extant crocodylians, thalattosuchians, and dyrosaurids). The narrow diameter of the semicircular canals but expanded morphology of the endosseous labyrinths and the enlarged pneumatization of the skull compared to other forms indeed tend to indicate a terrestrial lifestyle for Zulmasuchus. Our results highlight the need to gather new data, especially from altirostral forms in order to further our understanding of the evolution of endocranial structures in crocodylomorphs with different ecomorphological adaptations.
Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Canais Semicirculares/anatomia & histologia , Crânio/diagnóstico por imagem , Animais , Artérias/anatomia & histologia , Artérias/diagnóstico por imagem , Bolívia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Vértebras Cervicais/anatomia & histologia , Vértebras Cervicais/diagnóstico por imagem , Nervos Cranianos/anatomia & histologia , Nervos Cranianos/diagnóstico por imagem , Cavidades Cranianas/anatomia & histologia , Cavidades Cranianas/diagnóstico por imagem , Dinossauros/fisiologia , Orelha Interna/anatomia & histologia , Orelha Interna/diagnóstico por imagem , Fósseis/diagnóstico por imagem , Audição , Estilo de Vida , Postura , Canais Semicirculares/diagnóstico por imagem , Crânio/anatomia & histologia , Crânio/irrigação sanguínea , Tomógrafos ComputadorizadosRESUMO
[This corrects the article DOI: 10.1007/s00531-021-02003-1.].
RESUMO
The cingulates of the mammalian order Xenarthra present a typical case of disagreement between molecular and morphological phylogenetic studies. We report here the discovery of two new skulls from the Late Oligocene Salla Beds of Bolivia (approx. 26 Ma), which are the oldest known well-preserved cranial remains of the group. A new taxon is described: Kuntinaru boliviensis gen. et sp. nov. A phylogenetic analysis clusters K. boliviensis together with the armadillo subfamily Tolypeutinae. These skulls document an early spotty occurrence for the Tolypeutinae at 26 Ma, in agreement with the temporal predictions of previous molecular studies. The fossil record of tolypeutines is now characterized by a unique occurrence in the Late Oligocene, and a subsequent 12 Myr lack in the fossil record. It is noteworthy that the tolypeutines remain decidedly marginal in the Late Palaeogene and Early Neogene deposits, whereas other cingulate groups diversify. Also, the anatomical phylogenetic analysis herein, which includes K. boliviensis, is congruent with recent molecular phylogenetic analyses. Kuntinaru boliviensis is the oldest confident calibration point available for the whole Cingulata.
Assuntos
Tatus/anatomia & histologia , Tatus/genética , Evolução Biológica , Fósseis , Crânio/anatomia & histologia , Xenarthra/anatomia & histologia , Animais , Bolívia , Filogenia , Xenarthra/genéticaRESUMO
The Miocene Pisco Formation, broadly exposed in the Ica Desert of southern Peru, is among the most outstanding Cenozoic marine Fossil-Lagerstätten worldwide. It is renowned for its exceptional preservation and abundance of vertebrate fossils, including a rich assemblage of whales and dolphins (Cetacea). Here, we integrate taphonomic data on 890 marine vertebrate fossils, gathered through 16 different localities. Our observations range from the taxonomic distribution, articulation, completeness, disposition and orientation of skeletons, to the presence of bite marks, associations with shark teeth and macro-invertebrates, bone and soft tissue preservation, and the formation of attendant carbonate concretions and sedimentary structures. We propose that the exceptional preservation characterising many Pisco vertebrates, as well as their exceptionally high abundance, cannot be ascribed to a single cause like high sedimentation rates (as proposed in the past), but rather to the interplay of several favourable factors including: (i) low levels of dissolved oxygen at the seafloor (with the intervention of seasonal anoxic events); (ii) the early onset of mineralisation processes like apatite dissolution/recrystallisation and carbonate mineral precipitation; (iii) rapid burial of carcasses in a soupy substrate and/or a novel mechanism involving scour-induced self-burial; and (iv) original biological richness. Collectively, our observations provide a comprehensive overview of the taphonomic processes that shaped one of South America's most important fossil deposits, and suggest a model for the formation of other marine vertebrate Fossil-Lagerstätten.
Assuntos
Fósseis , Animais , Invertebrados , Paleontologia , PeruRESUMO
Several aspects of the fascinating evolutionary history of toothed and baleen whales (Cetacea) are still to be clarified due to the fragmentation and discontinuity (in space and time) of the fossil record. Here we open a window on the past, describing a part of the extraordinary cetacean fossil assemblage deposited in a restricted interval of time (19-18 Ma) in the Chilcatay Formation (Peru). All the fossils here examined belong to the Platanistoidea clade as here redefined, a toothed whale group nowadays represented only by the Asian river dolphin Platanista gangetica. Two new genera and species, the hyper-longirostrine Ensidelphis riveroi and the squalodelphinid Furcacetus flexirostrum, are described together with new material referred to the squalodelphinid Notocetus vanbenedeni and fragmentary remains showing affinities with the platanistid Araeodelphis. Our cladistic analysis defines the new clade Platanidelphidi, sister-group to Allodelphinidae and including E. riveroi and the clade Squalodelphinidae + Platanistidae. The fossils here examined further confirm the high diversity and disparity of platanistoids during the early Miocene. Finally, morphofunctional considerations on the entire platanistoid assemblage of the Chilcatay Formation suggest a high trophic partitioning of this peculiar cetacean paleocommunity.
RESUMO
Cetaceans originated in south Asia more than 50 million years ago (mya), from a small quadrupedal artiodactyl ancestor [1-3]. Amphibious whales gradually dispersed westward along North Africa and arrived in North America before 41.2 mya [4]. However, fossil evidence on when, through which pathway, and under which locomotion abilities these early whales reached the New World is fragmentary and contentious [5-7]. Peregocetus pacificus gen. et sp. nov. is a new protocetid cetacean discovered in middle Eocene (42.6 mya) marine deposits of coastal Peru, which constitutes the first indisputable quadrupedal whale record from the Pacific Ocean and the Southern Hemisphere. Preserving the mandibles and most of the postcranial skeleton, this unique four-limbed whale bore caudal vertebrae with bifurcated and anteroposteriorly expanded transverse processes, like those of beavers and otters, suggesting a significant contribution of the tail during swimming. The fore- and hind-limb proportions roughly similar to geologically older quadrupedal whales from India and Pakistan, the pelvis being firmly attached to the sacrum, an insertion fossa for the round ligament on the femur, and the retention of small hooves with a flat anteroventral tip at fingers and toes indicate that Peregocetus was still capable of standing and even walking on land. This new record from the southeastern Pacific demonstrates that early quadrupedal whales crossed the South Atlantic and nearly attained a circum-equatorial distribution with a combination of terrestrial and aquatic locomotion abilities less than 10 million years after their origin and probably before a northward dispersal toward higher North American latitudes. VIDEO ABSTRACT.
Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Natação , Caminhada , Baleias/fisiologia , Animais , Peru , Filogenia , Cauda/anatomia & histologia , Cauda/fisiologia , Baleias/anatomia & histologiaRESUMO
The living tree sloths Choloepus and Bradypus are the only remaining members of Folivora, a major xenarthran radiation that occupied a wide range of habitats in many parts of the western hemisphere during the Cenozoic, including both continents and the West Indies. Ancient DNA evidence has played only a minor role in folivoran systematics, as most sloths lived in places not conducive to genomic preservation. Here we utilize collagen sequence information, both separately and in combination with published mitochondrial DNA evidence, to assess the relationships of tree sloths and their extinct relatives. Results from phylogenetic analysis of these datasets differ substantially from morphology-based concepts: Choloepus groups with Mylodontidae, not Megalonychidae; Bradypus and Megalonyx pair together as megatherioids, while monophyletic Antillean sloths may be sister to all other folivorans. Divergence estimates are consistent with fossil evidence for mid-Cenozoic presence of sloths in the West Indies and an early Miocene radiation in South America.
Assuntos
Bichos-Preguiça , Animais , DNA Mitocondrial , Fósseis , FilogeniaRESUMO
The South Asian river dolphin (Platanista gangetica) is the only extant survivor of the large clade Platanistoidea, having a well-diversified fossil record from the Late Oligocene to the Middle Miocene. Based on a partial skeleton collected from the Chilcatay Formation (Chilcatay Fm; southern coast of Peru), we report here a new squalodelphinid genus and species, Macrosqualodelphis ukupachai. A volcanic ash layer, sampled near the fossil, yielded the 40Ar/39Ar age of 18.78 ± 0.08 Ma (Burdigalian, Early Miocene). The phylogenetic analysis places Macrosqualodelphis as the earliest branching squalodelphinid. Combined with several cranial and dental features, the large body size (estimated body length of 3.5 m) of this odontocete suggests that it consumed larger prey than the other members of its family. Together with Huaridelphis raimondii and Notocetus vanbenedeni, both also found in the Chilcatay Fm, this new squalodelphinid further demonstrates the peculiar local diversity of the family along the southeastern Pacific coast, possibly related to their partition into different dietary niches. At a wider geographical scale, the morphological and ecological diversity of squalodelphinids confirms the major role played by platanistoids during the Early Miocene radiation of crown odontocetes.
RESUMO
Cetotheriidae are an iconic, nearly extinct family of baleen whales (Mysticeti) with a highly distinct cranial morphology. Their origins remain a mystery, with even the most archaic species showing a variety of characteristic features. Here, we describe a new species of archaic cetotheriid, Tiucetus rosae, from the Miocene of Peru. The new material represents the first mysticete from the poorly explored lowest portion of the highly fossiliferous Pisco Formation (allomember P0), and appears to form part of a more archaic assemblage than observed at the well-known localities of Cerro Colorado, Cerro los Quesos, Sud-Sacaco and Aguada de Lomas. Tiucetus resembles basal plicogulans (crown Mysticeti excluding right whales), such as Diorocetus and Parietobalaena, but shares with cetotheriids a distinct morphology of the auditory region, including the presence of an enlarged paroccipital concavity. The distinctive morphology of Tiucetus firmly places Cetotheriidae in the context of the poorly understood 'cetotheres' sensu lato, and helps to resolve basal relationships within crown Mysticeti.
RESUMO
Although combined molecular and morphological analyses point to a late middle Eocene (38-39 million years ago) origin for the clade Neoceti (Odontoceti, echolocating toothed whales plus Mysticeti, baleen whales, and relatives), the oldest known mysticete fossil dates from the latest Eocene (about 34 million years ago) of Antarctica [1, 2]. Considering that the latter is not the most stemward mysticete in recent phylogenies and that Oligocene toothed mysticetes display a broad morphological disparity most likely corresponding to contrasted ecological niches, the origin of mysticetes from a basilosaurid ancestor and its drivers are currently poorly understood [1, 3-8]. Based on an articulated cetacean skeleton from the early late Eocene (Priabonian, around 36.4 million years ago) of the Pisco Basin, Peru, we describe a new archaic tooth-bearing mysticete, Mystacodon selenensis gen. et sp. nov. Being the geologically oldest neocete (crown group cetacean) and the earliest mysticete to branch off described so far, the new taxon is interpreted as morphologically intermediate between basilosaurids and later toothed mysticetes, providing thus crucial information about the anatomy of the skull, forelimb, and innominate at these critical initial stages of mysticete evolution. Major changes in the morphology of the oral apparatus (including tooth wear) and flipper compared to basilosaurids suggest that suction and possibly benthic feeding represented key, early ecological traits accompanying the emergence of modern filter-feeding baleen whales' ancestors.
Assuntos
Evolução Biológica , Comportamento Alimentar , Fósseis/anatomia & histologia , Baleias/anatomia & histologia , Animais , Filogenia , Dente/anatomia & histologia , Baleias/fisiologiaRESUMO
The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of â¼66 Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.
Assuntos
Eutérios/genética , Evolução Molecular , Genoma Mitocondrial , Animais , Eutérios/classificação , Fósseis , Filogenia , América do SulRESUMO
Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation.