Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 15(1): 40, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340610

RESUMO

BACKGROUND: The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS: Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS: Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Monitoramento Ambiental/métodos , Epigênese Genética/efeitos dos fármacos , Nanopartículas/toxicidade , Material Particulado/toxicidade , Animais , Brasil , Cidades , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos Endogâmicos , Especificidade de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula
2.
Sci Rep ; 4: 5359, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24942522

RESUMO

Light sticks (LS) are sources of chemiluminescence commonly used in pelagic fishery, where hundreds are discarded and reach the shores. Residents from fishing villages report an improper use of LS contents on the skin. Given the scarce information regarding LS toxicity, the effects of LS solutions in cell cultures were evaluated herein. Loss of viability, cell cycle changes and DNA fragmentation were observed in HepG2 cell line and skin fibroblasts. A non-cytotoxic LS concentration increased the occurrence of the mutagenic lesion 1,N(6)-εdAdo in HepG2 DNA by three-fold. Additionally, in vitro incubations of spent LS contents with DNA generated dGuo-LS adducts, whose structure elucidation revealed the presence of a reactive chlorinated product. In conclusion, the LS contents were found to be highly cyto- and genotoxic. Our data indicate an urgent need for LS waste management guidelines and for adequate information regarding toxic outcomes that may arise from human exposure.


Assuntos
Pesqueiros/instrumentação , Luz , Luminescência , Compostos Orgânicos/farmacologia , Antracenos/química , Antracenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Adutos de DNA/química , Adutos de DNA/efeitos dos fármacos , Dibutilftalato/química , Dibutilftalato/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pesqueiros/métodos , Células Hep G2 , Humanos , Espectrometria de Massas/métodos , Estrutura Molecular , Mutagênicos/química , Mutagênicos/farmacologia , Compostos Orgânicos/química , Oxalatos/química , Oxalatos/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Pele/citologia , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA