RESUMO
AIMS: Ischaemic heart disease remains a significant cause of mortality globally. A pharmacological agent that protects cardiac mitochondria against oxygen deprivation injuries is welcome in therapy against acute myocardial infarction. Here, we evaluate the effect of large-conductance Ca2+-activated K+ channels (BKCa) activator, Compound Z, in isolated mitochondria under hypoxia and reoxygenation. METHODS: Mitochondria from mice hearts were obtained by differential centrifugation. The isolated mitochondria were incubated with a BKCa channel activator, Compound Z, and subjected to normoxia or hypoxia/reoxygenation. Mitochondrial function was evaluated by measurement of O2 consumption in the complexes I, II, and IV in the respiratory states 1, 2, 3, and by maximal uncoupled O2 uptake, ATP production, ROS production, transmembrane potential, and calcium retention capacity. RESULTS: Incubation of isolated mitochondria with Compound Z under normoxia conditions reduced the mitochondrial functions and induced the production of a significant amount of ROS. However, under hypoxia/reoxygenation, the Compound Z prevented a profound reduction in mitochondrial functions, including reducing ROS production over the hypoxia/reoxygenation group. Furthermore, hypoxia/reoxygenation induced a large mitochondria depolarization, which Compound Z incubation prevented, but, even so, Compound Z created a small depolarization. The mitochondrial calcium uptake was prevented by the BKCa activator, extruding the mitochondrial calcium present before Compound Z incubation. CONCLUSION: The Compound Z acts as a mitochondrial BKCa channel activator and can protect mitochondria function against hypoxia/reoxygenation injury, by handling mitochondrial calcium and transmembrane potential.
Assuntos
Cálcio , Mitocôndrias Cardíacas , Animais , Camundongos , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Masculino , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Hipóxia/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismoRESUMO
Microcystin-LR (MC-LR) is a potent cyanotoxin that can reach several organs. However subacute exposure to sublethal doses of MC-LR has not yet well been studied. Herein, we evaluated the outcomes of subacute and sublethal MC-LR exposure on lungs. Male BALB/c mice were exposed to MC-LR by gavage (30 µg/kg) for 20 consecutive days, whereas CTRL mice received filtered water. Respiratory mechanics was not altered in MC-LR group, but histopathology disclosed increased collagen deposition, immunological cell infiltration, and higher percentage of collapsed alveoli. Mitochondrial function was extensively affected in MC-LR animals. Additionally, a direct in vitro titration of MC-LR revealed impaired mitochondrial function. In conclusion, MC-LR presented an intense deleterious effect on lung mitochondrial function and histology. Furthermore, MC-LR seems to exert an oligomycin-like effect in lung mitochondria. This study opens new perspectives for the understanding of the putative pulmonary initial mechanisms of damage resulting from oral MC-LR intoxication.
Assuntos
Microcistinas , Mitocôndrias , Animais , Ingestão de Alimentos , Pulmão , Masculino , Toxinas Marinhas , Camundongos , Microcistinas/metabolismo , Microcistinas/toxicidade , Oligomicinas/metabolismo , Oligomicinas/farmacologiaRESUMO
Direct analysis of isolated mitochondria enables a better understanding of lung dysfunction. Despite well-defined mitochondrial isolation protocols applicable to other tissues, such as the brain, kidney, heart, and liver, a robust and reproductive protocol has not yet been advanced for the lung. We describe a protocol for the isolation of mitochondria from lung tissue aiming for functional analyses of mitochondrial O2 consumption, transmembrane potential, reactive oxygen species (ROS) formation, ATP production, and swelling. We compared our protocol to that used for heart mitochondrial function that is well-established in the literature, and achieved similar results.
RESUMO
Background CDNF (cerebral dopamine neurotrophic factor) belongs to a new family of neurotrophic factors that exert systemic beneficial effects beyond the brain. Little is known about the role of CDNF in the cardiac context. Herein we investigated the effects of CDNF under endoplasmic reticulum-stress conditions using cardiomyocytes (humans and mice) and isolated rat hearts, as well as in rats subjected to ischemia/reperfusion (I/R). Methods and Results We showed that CDNF is secreted by cardiomyocytes stressed by thapsigargin and by isolated hearts subjected to I/R. Recombinant CDNF (exoCDNF) protected human and mouse cardiomyocytes against endoplasmic reticulum stress and restored the calcium transient. In isolated hearts subjected to I/R, exoCDNF avoided mitochondrial impairment and reduced the infarct area to 19% when administered before ischemia and to 25% when administered at the beginning of reperfusion, compared with an infarct area of 42% in the untreated I/R group. This protection was completely abrogated by AKT (protein kinase B) inhibitor. Heptapeptides containing the KDEL sequence, which binds to the KDEL-R (KDEL receptor), abolished exoCDNF beneficial effects, suggesting the participation of KDEL-R in this cardioprotection. CDNF administered intraperitoneally to rats decreased the infarct area in an in vivo model of I/R (from an infarct area of ≈44% in the I/R group to an infarct area of ≈27%). Moreover, a shorter version of CDNF, which lacks the last 4 residues (CDNF-ΔKTEL) and thus allows CDNF binding to KDEL-R, presented no cardioprotective activity in isolated hearts. Conclusions This is the first study to propose CDNF as a new cardiomyokine that induces cardioprotection via KDEL receptor binding and PI3K/AKT activation.
Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fatores de Crescimento Neural/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Humoral factors released during ischemic preconditioning (IPC) protect the myocardium against ischemia/reperfusion (I/R) injury. We have recently identified 10 kDa-heat shock protein (HSP10) and a fraction of small 5-10 kDa peptides (5-10-sP) in the coronary effluent of IPC-treated hearts and demonstrated their cardioprotective potential. We here used our isolated mitochondria model to characterize the impact of exogenous HSP10 and 5-10-sP on mitochondria function from myocardium subjected to I/R injury. Isolated perfused rat hearts were submitted to 30-min global ischemia and 10-min reperfusion. Before ischemia, isolated hearts were infused with saline or 5-10-sP, with or without a mitochondrial ATP-sensitive-K+-channel blocker (5HD 10 µmol·L-1) or PKC inhibitor (chelerythrine 10 µmol·L-1), before I/R. HSP10 (1 µmol·L-1) was infused into isolated hearts before I/R without blockers. At 10-min reperfusion, the mitochondria were isolated and mitochondrial function was assessed. In a subset of experiments, freshly isolated mitochondria were directly incubated with HSP10 or 5-10-sP with or without 5HD or chelerythrine before in vitro hypoxia/reoxygenation. Infusion of 5-10-sP (n = 5) and HSP10 (n = 5) into isolated hearts before I/R improved mitochondrial ADP-stimulated respiration, ATP production and prevented mitochondrial ROS formation compared to the I/R group (n = 5); this effect was abrogated by 5HD and chelerythrine. In freshly isolated mitochondria with in vitro hypoxia/reoxygenation, HSP10 (n = 16) and 5-10-sP (n = 16) incubation prevented reductions of mitochondrial ADP-stimulated respiration (91.5 ± 5.1 nmol O2/min/mg PTN), ATP production (250.1 ± 9.3 µmol ATP/200µg PTN), and prevented mitochondrial ROS production (219.7 ± 9.0 nmol H2O2/200µg PTN) induced by hypoxia/reoxygenation (n = 12, 51.5 ± 5.0 nmol O2/min/mg PTN; 187 ± 21.7 µmol ATP/200 µg PTN; 339.0 ± 14.3 nmol H2O2/200 µg PTN, p < 0.001, respectively). 5HD reduced the ADP-stimulated respiration in the HSP10 group (65.84 ± 3.3 nmol O2/min/mg PTN), ATP production (193.7 ± 12.1 µmol ATP/200µg PTN) and increased ROS in the 5-10-sP group (274.4 ± 21.7 nmol H2O2/200 µg PTN). Mitochondria are a target of the cardioprotection induced by 5-10-sP and HSP10. This protection is dependent of PKC and mKATP activation. HSP10 can act directly on mitochondria and protects against hypoxia/reoxygenation injury by mKATP activation.
RESUMO
Chronic administration of anabolic androgenic steroids (AAS) in adult rats results in cardiac hypertrophy and increased susceptibility to myocardial ischemia/reperfusion (IR) injury. Molecular analyses demonstrated that hyperactivation of type 1 angiotensin II (AT1) receptor mediates cardiac hypertrophy induced by AAS and also induces down-regulation of myocardial ATP-sensitive potassium channel (KATP), resulting in loss of exercise-induced cardioprotection. Exposure to AAS during adolescence promoted long-term cardiovascular dysfunctions, such as dysautonomia. We tested the hypothesis that chronic AAS exposure in the pre/pubertal phase increases the susceptibility to myocardial ischemia/reperfusion (IR) injury in adult rats. Male Wistar rats (26day old) were treated with vehicle (Control, n=12) or testosterone propionate (TP) (AAS, 5mgkg-1 n=12) 5 times/week during 5 weeks. At the end of AAS exposure, rats underwent 23days of washout period and were submitted to euthanasia. Langendorff-perfused hearts were submitted to IR injury and evaluated for mechanical dysfunctions and infarct size. Molecular analysis was performed by mRNA levels of α-myosin heavy chain (MHC), ßMHC and brain-derived natriuretic peptide (BNP), ryanodine receptor (RyR2) and sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) by quantitative RT-PCR (qRT-PCR). The expression of AT1 receptor and KATP channel subunits (Kir6.1 and SURa) was analyzed by qRT-PCR and Western Blot. NADPH oxidase (Nox)-related reactive oxygen species generation was assessed by spectrofluorimetry. The expression of antioxidant enzymes was measured by qRT-PCR in order to address a potential role of redox unbalance. AAS exposure promoted long-term cardiac hypertrophy characterized by increased expression of ßMHC and ßMHC/αMHC ratio. Baseline derivative of pressure (dP/dt) was impaired by AAS exposure. Postischemic recovery of mechanical properties was impaired (decreased left ventricle [LV] developed pressure and maximal dP/dt; increased LV end-diastolic pressure and minimal dP/dt) and infarct size was larger in the AAS group. Catalase mRNA expression was significantly decreased in the AAS group. In conclusion, chronic administration of AAS during adolescence promoted long-term pathological cardiac hypertrophy and persistent increase in the susceptibility to myocardial IR injury possible due to disturbances on catalase expression.