Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Biochem Genet ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649558

RESUMO

Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions.

2.
Appl Microbiol Biotechnol ; 107(21): 6573-6589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658163

RESUMO

Spathaspora passalidarum is a xylose-fermenting microorganism promising for the fermentation of lignocellulosic hydrolysates. This yeast is more sensitive to ethanol than Saccharomyces cerevisiae for unclear reasons. An RNA-seq experiment was performed to identify transcriptional changes in S. passalidarum in response to ethanol and gain insights into this phenotype. The results showed the upregulation of genes associated with translation and the downregulation of genes encoding proteins involved in lipid metabolism, transporters, and enzymes from glycolysis and fermentation pathways. Our results also revealed that genes encoding heat-shock proteins and involved in antioxidant response were upregulated, whereas the osmotic stress response of S. passalidarum appears impaired under ethanol stress. A pseudohyphal morphology of S. passalidarum colonies was observed in response to ethanol stress, which suggests that ethanol induces a misperception of nitrogen availability in the environment. Changes in the yeast fatty acid profile were observed only after 12 h of ethanol exposure, coinciding with the recovery of the yeast xylose consumption ability. These findings suggest that the lack of fast membrane lipid adjustments, the halt in nutrient absorption and cellular metabolism, and the failure to induce the expression of osmotic stress-responsive genes are the main aspects underlying the low ethanol tolerance of S. passalidarum. KEY POINTS: • Ethanol stress halts Spathaspora passalidarum metabolism and fermentation • Genes encoding nutrient transporters showed downregulation under ethanol stress • Ethanol induces a pseudohyphal cell shape, suggesting a misperception of nutrients.

3.
Appl Microbiol Biotechnol ; 107(16): 5161-5178, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389589

RESUMO

Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.


Assuntos
Kefir , Microbiota , Camundongos , Animais , Kefir/microbiologia , Leite/metabolismo , Antioxidantes , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Butiratos , Encéfalo/metabolismo
4.
Mol Divers ; 27(1): 281-297, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35441971

RESUMO

Botrytis cinerea, Rhizoctonia solani and Hemileia vastatrix are three species of phytopathogenic fungi behind major crop losses worldwide. These have been selected as target models for testing the fungicide potential of a series of bis(ylidene) cyclohexanones. Although some compounds of this chemical class are known to have inhibitory activity against human pathogens, they have never been explored for the control of phytopathogens until now. In the present work, bis(ylidene) cyclohexanones were synthesized through simple, fast and low-cost base- or acid-catalyzed aldol condensation reaction and tested in vitro against B. cinerea, R. solani and H. vastatrix. bis(pyridylmethylene) cyclohexanones showed the highest activity against the target fungi. When tested at 200 nmol per mycelial plug against R. solani., these compounds completely inhibited the mycelial growth, and the most active bis(pyridylmethylene) cyclohexanone compound had an IC50 of 155.5 nmol plug-1. Additionally, bis(pyridylmethylene) cyclohexanones completely inhibited urediniospore germination of H. vastatrix, at 125 µmol L-1. The most active bis(pyridylmethylene) cyclohexanone had an IC50 value of 4.8 µmol L-1, which was estimated as approximately 2.6 times lower than that found for the copper oxychloride-based fungicide, used as control. Additionally, these substances had a low cytotoxicity against the mammalian Vero cell line. Finally, in silico calculations indicated that these compounds present physicochemical parameters regarded as suitable for agrochemicals. Bis(ylidene) cyclohexanones may constitute promising candidates for the development of novel antifungal agents for the control of relevant fungal diseases in agriculture.


Assuntos
Antifúngicos , Fungicidas Industriais , Humanos , Cicloexanonas , Doenças das Plantas/microbiologia , Fungos , Plantas
5.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375373

RESUMO

The interest in the consumption of edible flowers has increased since they represent a rich source of bioactive compounds, which are significantly beneficial to human health. The objective of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers presented pH value of 2.8 ± 0.00, soluble solids content of 3.4 ± 0.0 °Brix, high moisture content of about 91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was better than the results observed for other edible flowers (507.8 ± 2.7 µM TE and 783.9 ± 30.8 µM TE, respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives, kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting that the extract has no directly harmful effects to cells. The important bioactive compound identified in this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential without showing cytotoxicity.


Assuntos
Antocianinas , Hibiscus , Humanos , Antocianinas/química , Antioxidantes/química , Fenóis/química , Extratos Vegetais/química , Flores/química
6.
Appl Microbiol Biotechnol ; 106(12): 4627-4641, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759035

RESUMO

Tegumentary leishmaniasis (TL) is a disease of high severity and incidence in Brazil, and Leishmania braziliensis is its main etiological agent. The inefficiency of control measures, such as high toxicity and costs of current treatments and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present work developed a gene encoding multiple T-cell (CD4+/CD8+) epitope, derived from conserved proteins found in Leishmania species and associated with TL, to generate a chimeric protein (rMEP/TL) and compose a vaccine formulation. For this, six T-cell epitopes were selected by immunoinformatics approaches from proteins present in the amastigote stage and associated with host-parasite interactions. The following formulations were then tested in an L. braziliensis murine infection model: rMEP/TL in saline or associated with MPLA-PHAD®. Our data revealed that, after immunization (three doses; 14-day intervals) and subsequent challenging, rMEP/TL and rMEP/TL + MPLA-vaccinated mice showed an increased production of key immunological biomarkers of protection, such as IgG2a, IgG2a/IgG1, NO, CD4+, and CD8+ T-cells with IFN-γ and TNF-α production, associated with a reduction in CD4+IL-10+ and CD8+IL-10+ T-cells. Vaccines also induced the development of central (CD44highCD62Lhigh) and effector (CD44highCD62Llow) memory of CD4+ and CD8+ T-cells. These findings, associated with the observation of lower rates of parasite burdens in the vaccinated groups, when compared to the control groups, suggest that immunization with rMEP/TL and, preferably, associated with an adjuvant, may be considered an effective tool to prevent TL. KEY POINTS: • Rational design approaches for vaccine development. • Central and effector memory of CD4+ and CD8+ T-cells. • Vaccine comprised of rMEP/TL plus MPLA as an effective tool to prevent TL.


Assuntos
Vacinas contra Leishmaniose , Leishmaniose , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/genética , Imunoglobulina G , Interleucina-10/metabolismo , Leishmaniose/prevenção & controle , Vacinas contra Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C
7.
BMC Vet Res ; 18(1): 115, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331225

RESUMO

Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Mastite Bovina/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética , Fatores de Virulência/genética
8.
Arch Microbiol ; 203(9): 5345-5361, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387704

RESUMO

Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.


Assuntos
Mercúrio , Oryza , Aspergillus/genética , Curvularia , Endófitos , Mercúrio/toxicidade , Filogenia , Raízes de Plantas
9.
Appl Microbiol Biotechnol ; 105(18): 6805-6817, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34432132

RESUMO

Leishmania braziliensis is responsible for most cases of human tegumentary leishmaniasis (HTL) and has caused a wide range of clinical manifestations, including cutaneous (CL) and mucosal leishmaniasis (ML). The diagnosis is based on criteria that consider epidemiological data, clinical findings, and laboratory tests and is hard to establish. For laboratory tests, none of the assays available can be considered gold standards for disease detection. In addition, the Montenegro skin test, essential to supporting infectologists in the clinical management of the disease, is no longer available in Brazil. Thus, the aim of this study was to develop new targets to be used in diagnostic tests for HTL. In the first step, we carried out two-dimensional gel electrophoresis, followed by mass spectrometry, combined with heat map analysis and immunoproteomics approach, and disclosed eight proteins expressed in the amastigote stage specifically recognized by serum from CL and ML patients. A chimeric protein was designed based on the combination of thirteen linear B-cell epitopes, identified by immunoinformatics analysis, from L. braziliensis proteins. Our results showed that the strategy used in this work was successful in developing an antigen to be used in immunological assays (100.0% sensitivity and specificity) in the detection of HTL cases and in comparison with results obtained from an ELISA using soluble L. braziliensis antigen (SLb-Antigen) and immunofluorescence assay (Bio-Manguinhos/FIOCRUZ). The present technology opens the door for its use in field exams by means of an immunochromatographic test, which will be even more helpful in regions without laboratory structures.Key points• Rational strategy to develop antigens.• Integration between immunoproteomic and immunoinformatics analysis.• Chimeric protein shows high performance in HTL diagnosis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Ensaio de Imunoadsorção Enzimática , Humanos , Leishmaniose Cutânea/diagnóstico , Proteômica , Proteínas Recombinantes de Fusão
10.
J Invertebr Pathol ; 179: 107525, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33383067

RESUMO

The growing spread of dengue, chikungunya and Zika viruses demand the development of new and environmentally safe control methods for their vector, the mosquito Aedes aegypti. This study aims to find novel larvicidal agents from mutualistic (endophytic and rhizospheric) or edaphic bacteria that have no action against non-target organisms. Eleven out of the 254 bacterial strains tested were able to kill Ae. aegypti larvae. Larvicidal activity did not depend on presence of cells, since culture supernatants or crude lipopeptide extracts (CLEs) killed the larvae. Bacillus safensis BacI67 and Bacillus paranthracis C21 supernatants were the best performing supernatants, displaying the lowest lethal concentrations (LC50 = 31.11 µL/mL and 45.84 µL/mL, respectively). Bacillus velezensis B64a and Bacillus velezensis B15 produced the best performing CLEs (LC50 = 0.11 mg/mL and 0.12 mg/mL, respectively). Mass spectrometry analysis of CLEs detected a mixture of surfactins, iturins, and fengycins. The samples tested were weakly- or non-toxic to mammalian cells (RAW 264.7 macrophages and VERO cells) and non-target organisms (Caenorhabditis elegans, Galleria mellonella, Scenedesmus obliquus, and Tetrahymena pyriformis) - especially B. velezensis B15 CLE. The biosynthetic gene clusters related to secondary metabolism identified by whole genome sequencing of the four best performing bacteria strains revealed clusters for bacteriocin, beta-lactone, lanthipeptide, non-ribosomal peptide synthetases, polyketide synthases (PKS), siderophores, T3PKS, type 1 PKS-like, terpenes, thiopeptides, and trans-AT-PKS. Purification of lipopeptides may clarify the mechanisms by which these extracts kill Ae. aegypti larvae.


Assuntos
Aedes/fisiologia , Bacillus/metabolismo , Controle de Mosquitos , Aedes/crescimento & desenvolvimento , Aedes/microbiologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Chlorocebus aethiops , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Camundongos , Mariposas/efeitos dos fármacos , Células RAW 264.7/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Tetrahymena pyriformis/efeitos dos fármacos , Testes de Toxicidade , Células Vero/efeitos dos fármacos
11.
BMC Genomics ; 20(1): 866, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730444

RESUMO

BACKGROUND: The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS: The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS: The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.


Assuntos
Sequenciamento do Exoma/estatística & dados numéricos , Regulação da Expressão Gênica no Desenvolvimento , Gambás/genética , Proteínas/genética , Transcriptoma , Animais , Animais Recém-Nascidos , Brasil , Ontologia Genética , Anotação de Sequência Molecular , Gambás/crescimento & desenvolvimento , Gambás/metabolismo , Proteínas/classificação , Proteínas/metabolismo , Análise de Sequência de RNA
12.
Microb Pathog ; 137: 103745, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520734

RESUMO

The antivirulence approach to fighting biofilm-based infections caused by Staphylococcus aureus is a promising therapy that has been studied extensively. Here, we compare the antibiofilm activity of a purified lectin from Bothrops jararacussu venom (BJcuL) and commercial lectins obtained from Triticum vulgaris (Wheat Germ Agglutinin, WGA), Bandeiraea simplicifolia BS-II, and Maclura pomifera. Only WGA had antibiofilm activity, although no effect was seen on pre-formed biofilms. The pre-incubation of WGA and BJcuL with their preferential sugars inhibited the biological activity of WGA, but not that of BJcuL, suggesting that biofilm disruption does not involve carbohydrate-recognition domains (CRDs). Quantitative real-time PCR showed that BJcuL promotes modulation of expression of S. aureus genes involved in biofilm formation. Light microscopy revealed cocci and small cell clusters after biofilm formation in the presence of BJcuL, showing that the lectin treatment was unable to completely disrupt biofilm structure. Exposing the free cells to 50 times the minimum inhibitory concentration of gentamicin or ciprofloxacin did not prevent biofilm reestablishment, although inhibition was stronger than in the control (no lectin). This disruption of the biofilm architecture can expose the bacterial cell and may facilitate clearance by the immune system.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Venenos de Crotalídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Bothrops , Carboidratos/química , Ciprofloxacina/farmacologia , Venenos de Crotalídeos/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Gentamicinas/farmacologia , Lectinas Tipo C/isolamento & purificação , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética
14.
Virus Genes ; 54(1): 77-85, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128885

RESUMO

Infectious bronchitis virus (IBV) is currently one of the most important pathogens in the poultry industry. The H120 and Ma5 are the only viral strains approved by the Brazilian government as the constituent of vaccines. Despite the systematic vaccination in Brazil, IBV has not yet been controlled and diseases associated with this virus have been reported in vaccinated chickens. Here, we investigated the genetic variability of H120 and Ma5 strains present in the IBV vaccines from different Brazilian manufacturers. We performed DNA sequencing analyses of the S1 spike glycoprotein gene to investigate its genetic variability and the presence of viral subpopulations among vaccines, between batches, and also in each vaccine after a single passage was performed in chicken embryonated eggs. Our results revealed up to 13 amino acid substitutions among vaccines and some of them were localized in regions of the S1 glycoprotein that play a role in virus-host interaction. Secondary nucleotide peaks identified in the chromatogram for the S1 gene sequence revealed that all original vaccines (H120 and Ma5) were composed by different subpopulations of IBV. Moreover, new viral subpopulations were also found in vaccines after a single passage in chicken embryonated eggs. These findings indicate that H120 and Ma5 viral strains used in vaccines market in Brazil can still mutate very rapidly during replication, leading to amino acid substitutions in proteins involved in the stimulation of the immune response, such as the S1 glycoprotein. Therefore, our data suggest that the genetic variability of these viral strains should be taken into consideration to ensure an effective immune response against IBV.


Assuntos
Infecções por Coronavirus/veterinária , Variação Genética , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais , Substituição de Aminoácidos , Animais , Brasil , Galinhas , Infecções por Coronavirus/prevenção & controle , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus/genética
15.
Appl Microbiol Biotechnol ; 102(5): 2235-2249, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29353306

RESUMO

The cell surface of Toxoplasma gondii is covered by antigens (SAGs) from the SRS family anchored by glycosylphosphatidylinositol (GPI) and includes antigens from the SAG2 family. Among these, the SAG2A surface antigen shows great potential in activating humoral responses and has been used in characterizing the acute phase of infection and in the serological diagnosis of toxoplasmosis. In this study, we aimed to evaluate rSAG2A-induced proteins in BALB/c and C57BL/c mice macrophages and to evaluate the phenotypic polarization induced in the process. We treated the peritoneal macrophages from mouse strains that were resistant or susceptible to T. gondii with rSAG2A to analyze their proteomic profile by mass spectrometry and systems biology. We also examined the gene expression of these cells by RT-qPCR using the phenotypic markers of M1 and M2 macrophages. Differences were observed in the expression of proteins involved in the inflammatory process in both resistant and susceptible cells, and macrophages were preferentially induced to obtain a pro-inflammatory immune response (M1) via the overexpression of IL-1ß in mice susceptible to this parasite. These data suggest that the SAG2A antigen induces phenotypic and classical activation of macrophages in both resistant and susceptible strains of mice during the acute phase of the disease.


Assuntos
Antígenos de Protozoários/imunologia , Interleucina-1beta/imunologia , Macrófagos Peritoneais/parasitologia , Proteínas de Protozoários/imunologia , Toxoplasmose/imunologia , Animais , Antígenos de Protozoários/genética , Células Cultivadas , Feminino , Humanos , Interleucina-1beta/química , Interleucina-1beta/genética , Macrófagos Peritoneais/química , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteômica , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/parasitologia
16.
Appl Microbiol Biotechnol ; 102(14): 6069-6080, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736822

RESUMO

Serological tests are preferentially used for the diagnosis of Chagas' disease (CD) during the chronic phase because of the low parasitemia and high anti-Trypanosoma cruzi antibody titers. However, the current methods showed several disadvantages, as contradictory or inconclusive results, mainly related to the characteristics of the antigens used, in general, crude or whole parasites, but also due to antigen production protocol and the experimental conditions used in serological tests. Thus, better-quality serological assays are urgently needed. Here, we performed a wide immunogenomic screen strategy to identify conserved linear B-cell epitopes in the predicted proteome based on genome sequence from T. cruzi strains to will be applied as synthetic peptides in the serodiagnosis of the chronic CD. Three B-cell epitopes derived from mucin-associated surface protein (MASP) family, expressed in both infective parasite stages, trypomastigote and amastigotes, conserved in T. cruzi strains, and highly divergent as compared with Leishmania spp. proteome, were selected for this study. The results demonstrated that synthetic peptide 2 and a mixture of peptides (Mix II: peptides 2 and 3) were able to identify all chronic CD cases, indeterminate or Chagas cardiomyopathy clinical presentation, and simultaneously able to discriminate infections caused by Leishmania parasites, with high accuracy (98.37 and 100.00%, respectively) and agreement (kappa index = 0.967 and 1.000, respectively) with direct methods as compared to current diagnostic pipeline performed by reference laboratories in Brazil. This study represents an interesting strategy for the discovery of new antigens applied to serologic diagnosis of infectious diseases and for the technological development of platforms for large-scale production of diagnostic tests.


Assuntos
Antígenos de Protozoários/imunologia , Doença de Chagas/diagnóstico , Epitopos de Linfócito B/imunologia , Genômica , Trypanosoma cruzi/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Brasil , Doença de Chagas/imunologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Proteoma , Testes Sorológicos , Trypanosoma cruzi/genética
17.
Malar J ; 16(1): 42, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28118834

RESUMO

BACKGROUND: The clinical outcome of malaria depends on the delicate balance between pro-inflammatory and immunomodulatory cytokine responses triggered during infection. Despite the numerous reports on characterization of plasma levels of cytokines/chemokines, there is no consensus on the profile of these mediators during blood stage malaria. The identification of acute phase biomarkers might contribute to a better understanding of the disease, allowing the use of more effective therapeutic approaches to prevent the progression towards severe disease. In the present study, the plasma levels of cytokines and chemokines and their association with parasitaemia and number of previous malaria episodes were evaluated in Plasmodium vivax-infected patients during acute and convalescence phase, as well as in healthy donors. METHODS: Samples of plasma were obtained from peripheral blood samples from four different groups: P. vivax-infected, P. vivax-treated, endemic control and malaria-naïve control. The cytokine (IL-6, IL-10, IL-17, IL-27, TGF-ß, IFN-γ and TNF) and chemokine (MCP-1/CCL2, IP-10/CXCL10 and RANTES/CCL5) plasma levels were measured by CBA or ELISA. The network analysis was performed using Spearman correlation coefficient. RESULTS: Plasmodium vivax infection induced a pro-inflammatory response driven by IL-6 and IL-17 associated with an immunomodulatory profile mediated by IL-10 and TGF-ß. In addition, a reduction was observed of IFN-γ plasma levels in P. vivax group. A lower level of IL-27 was observed in endemic control group in comparison to malaria-naïve control group. No significant results were found for IL-12p40 and TNF. It was also observed that P. vivax infection promoted higher levels of MCP-1/CCL2 and IP-10/CXCL10 and lower levels of RANTES/CCL5. The plasma level of IL-10 was elevated in patients with high parasitaemia and with more than five previous malaria episodes. Furthermore, association profile between cytokine and chemokine levels were observed by correlation network analysis indicating signature patterns associated with different parasitaemia levels. CONCLUSIONS: The P. vivax infection triggers a balanced immune response mediated by IL-6 and MCP-1/CCL2, which is modulated by IL-10. In addition, the results indicated that IL-10 plasma levels are influenced by parasitaemia and number of previous malaria episodes.


Assuntos
Citocinas/sangue , Malária Vivax/imunologia , Malária Vivax/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Plasma/química , Adulto Jovem
18.
BMC Vet Res ; 13(1): 177, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619055

RESUMO

BACKGROUND: Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira spp. This zoonotic disease is distributed globally and affects domestic animals, including cattle. Leptospira interrogans serogroup Sejroe serovar Hardjo and Leptospira borgpetersenii serogroup Sejroe serovar Hardjo remain important species associated with this reproductive disease in livestock production. Previous studies on Brazilian livestock have reported that L. interrogans serovar Hardjo is the most prevalent leptospiral agent in this country and is related to clinical signs of leptospirosis, which lead to economic losses in production. Here, we described the isolation of three clinical strains (Norma, Lagoa and Bolivia) obtained from leptospirosis outbreaks that occurred in Minas Gerais state in 1994 and 2008. RESULTS: Serological and molecular typing using housekeeping (secY and 16SrRNA) and rfb locus (ORF22 and ORF36) genes were applied for the identification and comparative analysis of Leptospira spp. Our results identified the three isolates as L. interrogans serogroup Sejroe serovar Hardjo and confirmed the occurrence of this bacterial strain in Brazilian livestock. Genetic analysis using ORF22 and ORF36 grouped the Leptospira into serogroup Sejroe and subtype Hardjoprajitno. Genetic approaches were also applied to compare distinct serovars of L. interrogans strains by verifying the copy numbers of the IS1500 and IS1533 insertion sequences (ISs). The IS1500 copy number varied among the analyzed L. interrogans strains. CONCLUSION: This study provides evidence that L. interrogans serogroup Sejroe serovar Hardjo subtype Hardjoprajitno causes bovine leptospirosis in Brazilian production. The molecular results suggested that rfb locus (ORF22 and ORF36) could improve epidemiological studies by allowing the identification of Leptospira spp. at the serogroup level. Additionally, the IS1500 and IS1533 IS copy number analysis suggested distinct genomic features among closely related leptospiral strains.


Assuntos
Doenças dos Bovinos/microbiologia , Surtos de Doenças/veterinária , Leptospira interrogans/isolamento & purificação , Leptospirose/veterinária , Animais , Brasil/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Elementos de DNA Transponíveis , DNA Bacteriano , DNA Ribossômico , Genes Bacterianos , Loci Gênicos , Leptospira interrogans/classificação , Leptospira interrogans/genética , Leptospirose/epidemiologia , Leptospirose/microbiologia , Tipagem Molecular , Fases de Leitura Aberta
19.
Appl Microbiol Biotechnol ; 99(3): 1323-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25359475

RESUMO

The correct and early identification of humans and dogs infected with Leishmania are key steps in the control of leishmaniasis. Additionally, a method with high sensitivity and specificity at low cost that allows the screening of a large number of samples would be extremely valuable. In this study, we analyzed the potential of mitogen-activated protein kinase 3 (MAPK3) and mitogen-activated protein kinase 4 (MAPK4) proteins from Leishmania braziliensis to serve as antigen candidates for the serodiagnosis of human visceral and tegumentary leishmaniasis, as well as canine visceral disease. Moreover, we mapped linear B-cell epitopes in these proteins and selected those epitopes with sequences that were divergent in the corresponding orthologs in Homo sapiens, in Canis familiaris, and in Trypanosoma cruzi. We compared the performance of these peptides with the recombinant protein using ELISA. Both MAPK3 and MAPK4 recombinant proteins showed better specificity in the immunodiagnosis of human and canine leishmaniasis than soluble parasite antigens and the EIE-leishmaniose-visceral-canina-bio-manguinhos (EIE-LVC) kit. Furthermore, the performance of this serodiagnosis assay was improved using synthetic peptides corresponding to B-cell epitopes derived from both proteins.


Assuntos
Doenças do Cão/parasitologia , Epitopos de Linfócito B/química , Leishmania braziliensis/enzimologia , Leishmaniose/parasitologia , Leishmaniose/veterinária , Proteína Quinase 3 Ativada por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Animais , Anticorpos/análise , Anticorpos/imunologia , Linhagem Celular , Doenças do Cão/diagnóstico , Doenças do Cão/imunologia , Cães , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Leishmania braziliensis/química , Leishmania braziliensis/genética , Leishmania braziliensis/imunologia , Leishmaniose/diagnóstico , Leishmaniose/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Alinhamento de Sequência , Testes Sorológicos
20.
Foods ; 12(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900609

RESUMO

Gut microbiota imbalance is associated with the occurrence of metabolic diseases such as obesity. Thus, its modulation is a promising strategy to restore gut microbiota and improve intestinal health in the obese. This paper examines the role of probiotics, antimicrobials, and diet in modulating gut microbiota and improving intestinal health. Accordingly, obesity was induced in C57BL/6J mice, after which they were redistributed and fed with an obesogenic diet (intervention A) or standard AIN-93 diet (intervention B). Concomitantly, all the groups underwent a treatment phase with Lactobacillus gasseri LG-G12, ceftriaxone, or ceftriaxone followed by L. gasseri LG-G12. At the end of the experimental period, the following analysis was conducted: metataxonomic analysis, functional profiling of gut microbiota, intestinal permeability, and caecal concentration of short-chain fatty acids. High-fat diet impaired bacterial diversity/richness, which was counteracted in association with L. gasseri LG-G12 and the AIN-93 diet. Additionally, SCFA-producing bacteria were negatively correlated with high intestinal permeability parameters, which was further confirmed via functional profile prediction of the gut microbiota. A novel perspective on anti-obesity probiotics is presented by these findings based on the improvement of intestinal health irrespective of undergoing antimicrobial therapy or not.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA