Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 56(3): 293-309, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35781359

RESUMO

BACKGROUND/AIMS: An obesogenic diet (high fat and sugar, low fiber) is associated with an increased risk for metabolic and cardiovascular disorders. Previous studies have demonstrated that epigenetic changes can modify gene transcription and protein function, playing a key role in the development of several diseases. The methyltransferase Set7 methylates histone and non-histone proteins, influencing diverse biological and pathological processes. However, the functional role of Set7 in obesity-associated metabolic and cardiovascular complications is unknown. METHODS: Wild type and Set7 knockout female mice were fed a normal diet or an obesogenic diet for 12 weeks. Body weight gain and glucose tolerance were measured. The 3T3-L1 cells were used to determine the role of Set7 in white adipogenic differentiation. Cardiac morphology and function were evaluated by histology and echocardiography. An ex vivo Langendorff perfusion system was used to model cardiac ischemia/reperfusion (I/R). RESULTS: Here, we report that Set7 protein levels were enhanced in the heart and perigonadal adipose tissue (PAT) of female mice fed an obesogenic diet. Significantly, loss of Set7 prevented obesogenic diet-induced glucose intolerance in female mice although it did not affect the obesogenic diet-induced increase in body weight gain and adiposity in these animals, nor did Set7 inhibition change white adipogenic differentiation in vitro. In addition, loss of Set7 prevented the compromised cardiac functional recovery following ischemia and reperfusion (I/R) injury in obesogenic diet-fed female mice; however, deletion of Set7 did not influence obesogenic diet-induced cardiac hypertrophy nor the hemodynamic and echocardiographic parameters. CONCLUSION: These data indicate that Set7 plays a key role in obesogenic diet-induced glucose intolerance and compromised myocardial functional recovery after I/R in obese female mice.


Assuntos
Intolerância à Glucose , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Isquemia , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Reperfusão/efeitos adversos
2.
Clin Sci (Lond) ; 136(21): 1537-1554, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36285636

RESUMO

Cardiovascular diseases are the main cause of death worldwide. Recent studies have revealed the influence of histone-modifying enzymes in cardiac remodeling and heart dysfunction. The Set7 methyltransferase regulates the expression of several genes through the methylation of histones and modulates the activity of non-histone proteins. However, the role of Set7 in cardiac remodeling and heart dysfunction remains unknown. To address this question, wild-type (WT) and Set7 knockout (KO) male mice were injected with isoproterenol or saline. WT mice injected with isoproterenol displayed a decrease in Set7 activity in the heart. In addition, WT and Set7 KO mice injected with isoproterenol exhibited cardiac hypertrophy. Interestingly, Set7 deletion exacerbated cardiac hypertrophy in response to isoproterenol but attenuated myocardial fibrosis. Echocardiograms revealed that WT mice injected with isoproterenol had lowered ejection fractions and fractional shortening, and increased E'-wave deceleration time and E/A ratio compared with their controls. Conversely, Set7 KO mice did not show alteration in these parameters in response to isoproterenol. However, prolonged exposure to isoproterenol induced cardiac dysfunction both in WT and Set7 KO mice. Both isoproterenol and Set7 deletion changed the transcriptional profile of the heart. Moreover, Set7 deletion increased the expression of Pgc1α and mitochondrial DNA content in the heart, and reduced the expression of cellular senescence and inflammation markers in response to isoproterenol. Taken together, our data suggest that Set7 deletion attenuates isoproterenol-induced myocardial fibrosis and delays heart dysfunction, suggesting that Set7 plays an important role in cardiac remodeling and dysfunction in response to stress.


Assuntos
Cardiomiopatias , Remodelação Ventricular , Camundongos , Masculino , Animais , Isoproterenol/efeitos adversos , Isoproterenol/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Camundongos Knockout , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Fibrose , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL
3.
Exp Physiol ; 107(8): 892-905, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35765992

RESUMO

NEW FINDINGS: What is the central question of this study? What is the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice? What is the main finding and its importance? Female mice fed an obesogenic diet exhibited cardiac hypertrophy associated with increased levels of miRNA-143-3p, decreased mRNA levels of Sox6 and increased mRNA levels of Myh7. Inhibition of miRNA-143-3p increased Sox6 mRNA levels and reduced Myh7 expression in cardiomyocytes, and prevented angiotensin II-induced cardiomyocyte hypertrophy. The results indicate that the miRNA-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. ABSTRACT: Obesity induces cardiometabolic disorders associated with a high risk of mortality. We have previously shown that the microRNA (miRNA) expression profile is changed in obesity-induced cardiac hypertrophy in male mice. Here, we investigated the effect of an obesogenic diet on the expression of miRNAs involved in cardiac hypertrophy in female mice. Female mice fed an obesogenic diet displayed an increased body weight gain, glucose intolerance, insulin resistance and dyslipidaemia. In addition, obese female mice exhibited cardiac hypertrophy associated with increased levels of several miRNAs, including miR-143-3p. Bioinformatic analysis identified Sox6, regulator of Myh7 gene transcription, as a predicted target of miR-143-3p. Female mice fed an obesogenic diet exhibited decreased mRNA levels of Sox6 and increased expression of Myh7 in the heart. Loss-of-function studies in cardiomyocytes revealed that inhibition of miR-143-3p increased Sox6 mRNA levels and reduced Myh7 expression. Collectively, our results indicate that obesity-associated cardiac hypertrophy in female mice is accompanied by alterations in diverse miRNAs, and suggest that the miR-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy.


Assuntos
Cardiomegalia , MicroRNAs , Animais , Cardiomegalia/metabolismo , Dieta , Feminino , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXD/metabolismo
4.
J Cell Physiol ; 236(6): 4640-4654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33345322

RESUMO

We have previously reported that angiotensin II receptor type 1 (AT1R) contributes to the hypertrophic effects of thyroid hormones (TH) in cardiac cells. Even though evidence indicates crosstalks between TH and AT1R, the underlying mechanisms are poorly understood. Beta-arrestin (ARRB) signaling has been described as noncanonical signal transduction pathway that exerts important effects in the cardiovascular system through G-protein-coupled receptors, as AT1R. Herein, we investigated the contribution of ARRB signaling in TH-induced cardiomyocyte hypertrophy. Primary cardiomyocyte cultures were treated with Triiodothyronine (T3) to induce cell hypertrophy. T3 rapidly activates extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, which was partially inhibited by AT1R blockade. Also, ERK1/2 inhibition attenuated the hypertrophic effects of T3. ARRB2 was upregulated by T3, and small interfering RNA assays revealed the role of ARRB2-but not ARRB1-on ERK1/2 activation and cardiomyocyte hypertrophy. Corroborating these findings, the ARRB2-overexpressed cells showed increased expression of hypertrophic markers, which were attenuated by ERK1/2 inhibition. Immunocytochemistry and immunoprecipitation assays revealed the increased expression of nuclear AT1R after T3 stimulation and the increased interaction of AT1R/ARRB2. The inhibition of endocytosis also attenuated the T3 effects on cardiac cells. Our results evidence the contribution of ARRB2 on ERK1/2 activation and cardiomyocyte hypertrophy induced by T3 via AT1R.


Assuntos
Cardiomegalia/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Tri-Iodotironina/toxicidade , beta-Arrestina 2/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Endocitose/efeitos dos fármacos , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Ratos Wistar , Transdução de Sinais , beta-Arrestina 2/genética
5.
Cell Physiol Biochem ; 54(6): 1199-1217, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252886

RESUMO

BACKGROUND/AIMS: Obesity is a risk factor associated with cardiometabolic complications. Recently, we reported that miRNA-22 deletion attenuated high-fat diet-induced adiposity and prevented dyslipidemia without affecting cardiac hypertrophy in male mice. In this study, we examined the impact of miRNA-22 in obesogenic diet-induced cardiovascular and metabolic disorders in females. METHODS: Wild type (WT) and miRNA-22 knockout (miRNA-22 KO) females were fed a control or an obesogenic diet. Body weight gain, adiposity, glucose tolerance, insulin tolerance, and plasma levels of total cholesterol and triglycerides were measured. Cardiac and white adipose tissue remodeling was assessed by histological analyses. Echocardiography was used to evaluate cardiac function and morphology. RNA-sequencing analysis was employed to characterize mRNA expression profiles in female hearts. RESULTS: Loss of miRNA-22 attenuated body weight gain, adiposity, and prevented obesogenic diet-induced insulin resistance and dyslipidemia in females. WT obese females developed cardiac hypertrophy. Interestingly, miRNA-22 KO females displayed cardiac hypertrophy without left ventricular dysfunction and myocardial fibrosis. Both miRNA-22 deletion and obesogenic diet changed mRNA expression profiles in female hearts. Enrichment analysis revealed that genes associated with regulation of the force of heart contraction, protein folding and fatty acid oxidation were enriched in hearts of WT obese females. In addition, genes related to thyroid hormone responses, heart growth and PI3K signaling were enriched in hearts of miRNA-22 KO females. Interestingly, miRNA-22 KO obese females exhibited reduced mRNA levels of Yap1, Egfr and Tgfbr1 compared to their respective controls. CONCLUSION: This study reveals that miRNA-22 deletion induces cardiac hypertrophy in females without affecting myocardial function. In addition, our findings suggest miRNA-22 as a potential therapeutic target to treat obesity-related metabolic disorders in females.


Assuntos
Cardiomegalia , Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Doenças Metabólicas , MicroRNAs/genética , Miocárdio , Obesidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
6.
Mech Ageing Dev ; 210: 111775, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36641038

RESUMO

High-fat diet (HFD) promotes obesity-related metabolic complications by activating cellular senescence in white adipose tissue (WAT). Growing evidence supports the importance of microRNA-22 (miR-22) in metabolic disorders and cellular senescence. Recently, we showed that miR-22 deletion attenuates obesity-related metabolic abnormalities. However, whether miR-22 mediates HFD-induced cellular senescence of WAT remains unknown. Here, we uncovered that obese mice displayed increased pri-miR-22 levels and cellular senescence in WAT. However, miR-22 ablation protected mice against HFD-induced WAT senescence. In addition, in vitro studies showed that miR-22 deletion prevented preadipocyte senescence in response to Doxorubicin (Doxo). Loss-of-function studies in vitro and in vivo revealed that miR-22 increases H2ax mRNA and γH2ax levels in preadipocytes and WAT without inducing DNA damage. Intriguingly, miR-22 ablation prevented HFD-induced increase in γH2ax levels and DNA damage in WAT. Similarly, miR-22 deletion prevented Doxo-induced increase in γH2ax levels in preadipocytes. Adipose miR-22 levels were enhanced in middle-aged mice fed a HFD than those found in young mice. Furthermore, miR-22 deletion attenuated fat mass gain and glucose imbalance induced by HFD in middle-aged mice. Overall, our findings indicate that miR-22 is a key regulator of obesity-induced WAT senescence and metabolic disorders in middle-aged mice.


Assuntos
Doenças Metabólicas , MicroRNAs , Camundongos , Animais , Obesidade/genética , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/prevenção & controle , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Endogâmicos C57BL
7.
Life Sci ; 316: 121416, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690245

RESUMO

AIMS: Blood vessels are surrounded by perivascular adipose tissue (PVAT), which plays an important role in vascular tonus regulation due to its anticontractile effect; however, this effect is impaired in obesity. We previously demonstrated that miRNA-22 is involved in obesity-related metabolic disorders. However, the impact of miRNA-22 on vascular reactivity and PVAT function is unknown. AIM: To investigate the role of miRNA-22 on vascular reactivity and its impact on obesity-induced PVAT dysfunction. MAIN METHODS: Wild-type and miRNA-22 knockout (KO) mice were fed a control or a high-fat (HF) diet. To characterize the vascular response, concentration-responses curves to noradrenaline were performed in PVAT- or PVAT+ thoracic aortic rings in absence and presence of L-NAME. Expression of adipogenic and thermogenic markers and NOS isoforms were evaluated by western blotting or qPCR. KEY FINDINGS: HF diet and miRNA-22 deletion reduced noradrenaline-induced contraction in PVAT- aortic rings. Additionally, miRNA-22 deletion increased noradrenaline-induced contraction in PVAT+ aortic rings without affecting its sensitivity; however, this effect was not observed in miRNA-22 KO mice fed a HF diet. Interestingly, miRNA-22 deletion reduced the contraction of aortic rings to noradrenaline via a NOS-dependent mechanism. Moreover, HF diet abolished the NOS-mediated anticontractile effect of PVAT, which was attenuated by miRNA-22 deletion. Mechanistically, we found that PVAT from miRNA-22 KO mice fed a HF diet presented increased protein expression of nNOS. SIGNIFICANCE: These results suggest that miRNA-22 is important for aorta reactivity under physiological circumstances and its deletion attenuates the loss of the NOS-mediated anticontractile effect of PVAT in obesity.


Assuntos
Tecido Adiposo , Aorta , MicroRNAs , Obesidade , Animais , Camundongos , Tecido Adiposo/metabolismo , Aorta/metabolismo , MicroRNAs/metabolismo , Norepinefrina/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Vasoconstrição
8.
Mol Cell Endocrinol ; 498: 110576, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520674

RESUMO

Obesity is the major risk factor for several cardiovascular and metabolic disorders. Previous studies reported that deletion of Angiotensin II type 2 receptor (AT2R) protects against metabolic dysfunctions induced by high fat (HF) diet. However, the role of AT2R in obesity-induced cardiac hypertrophy remains unclear. Male AT2R knockout (AT2RKO) and wild type (AT2RWT) mice were fed with control or HF diet for 10 weeks. HF diet increased cardiac expression of AT2R in obese mice. Deletion of AT2R did not affect body weight gain, glucose intolerance and fat mass gain induced by HF feeding. However, loss of AT2R prevented HF diet-induced hypercholesterolemia and cardiac remodeling. Mechanistically, we found that pharmacological inhibition or knockdown of AT2R prevented leptin-induced cardiomyocyte hypertrophy in vitro. Collectively, our results suggest that AT2R is involved in obesity-induced cardiac hypertrophy.


Assuntos
Cardiomegalia/etiologia , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Hipercolesterolemia/etiologia , Resistência à Insulina , Obesidade/complicações , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Leptina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA