Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(27): e202400173, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38457260

RESUMO

The Wittig reaction is one of the most important processes in organic chemistry for the asymmetric synthesis of olefinic compounds. In view of the increasingly acknowledged potentiality of the electric fields in promoting reactions, here we will consider the effect of the oriented external electric field (OEEF) on the second step of Wittig reaction (i. e. the ring opening oxaphosphetane) in a model system for non-stabilized ylides. In particular, we have determined the optimal direction and strength of the electric field that should be applied to annihilate the reaction barrier of the ring opening through the polarizable molecular electric dipole (PMED) model that we have recently developed. We conclude that the application of the optimal external electric field for the oxaphosphetane ring opening favours a Bestmann-like mechanism.

2.
Phys Chem Chem Phys ; 25(45): 31153-31164, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37953662

RESUMO

A systematic computational study is presented aimed at accurately describing the electronic ground state nature and properties of M2C (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) MXenes. Electronic band structure calculations in the framework of density functional theory (DFT), carried out with different types of basis sets and employing the generalized gradient approach (GGA) and hybrid functionals, provide strong evidence that Ti2C, Zr2C, Hf2C, and Cr2C MXenes exhibit an open-shell conducting ground state with localized spins on the metal atoms, while V2C, Nb2C, Mo2C, Ta2C, and W2C MXenes exhibit a diamagnetic conducting ground state. For Ti2C, Zr2C, Hf2C, and Cr2C, the analysis of the low-lying spin polarized solutions with different spin orderings indicates that their ground states are antiferromagnetic (AFM), consisting of two ferromagnetic (FM) metal layers coupled antiferromagnetically. For the diamagnetic MXenes, the converged spin polarized solutions are significantly less stable than the closed shell solution except for the case of V2C and Mo2C where those excited open shell solutions can be thermally accessible (less than 300 meV per formula unit). The analysis of charge and spin density distributions of the ground state of the MXenes reveals that, in all cases, the metal atoms have a net charge close to +1 e and C atoms close to -2 e. In the case of diamagnetic MXenes, the electronic structure of V2C, Nb2C, and Ta2C is consistent with metal atoms exhibiting a closed-shell s2d2 configuration whereas for Mo2C, and W2C is consistent with a low-spin s1d4 configuration although the FM solution is close in energy for V2C and Mo2C suggesting that they may play a role in their chemistry at high temperature. For the open shell MXenes, the spin density primarily located at the metal atoms showing one unpaired electron per Ti+, Zr+, and Hf+ magnetic center, consistent with s2d1 configuration of the metal atom, and of ∼3.5 unpaired electrons per Cr+ magnetic center interpreted as a mixture of s2d3 and high-spin s1d4 configuration. Finally, the analysis of the density of states reveals the metallic character of all these bare MXenes, irrespective of the nature of the ground state, with significant covalent contributions for Mo2C and W2C.

3.
J Chem Phys ; 157(21): 214704, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511546

RESUMO

Graphynes can be structurally envisioned as 2D extensions to graphene, whereby linearly bonded carbon linkages increase the distance between trigonal carbon nodes. Many graphynes have been predicted to exhibit a Dirac-like semimetallic (SEM) graphenic electronic structure, which could potentially make them competitive with graphene for applications. Currently, most graphynes remain as attractive synthetic targets, and their properties are still unconfirmed. Here, we demonstrate that the electronic structure of hexagonal α-graphyne is analogous to that of biaxially strained graphene. By comparison with accurate quantum Monte Carlo results on strained graphene, we show that the relative energetic stability of electronic states in this correlated 2D system can be captured by density functional theory (DFT) calculations using carefully tailored hybrid functionals. Our tuned hybrid DFT approach confirms that α-graphyne has a low energy correlated Mott-like antiferromagnetic insulating (AFI) state, which competes with the SEM state. Our work shows that the AFI-SEM crossover in α-graphyne could be tunable by in-plane biaxial strain. Applying our approach to other graphynes shows that they should also exhibit correlated AFI states, which could be dominant even at zero strain. Calculations using an onsite Coulombic repulsive term (i.e., DFT + U) also confirm the predictions of our hybrid DFT calculations. Overall, our work strongly suggests that graphynes are not as graphenic (i.e., Dirac-like) as often previously predicted by DFT calculations using standard generalized gradient approximation functionals. However, due to the greater electronic versatility (e.g., tunable semiconducting bandgaps and accessible spin polarized states) implied by our study, graphynes could have novel device applications that are complementary to those of graphene.

4.
J Chem Phys ; 128(11): 114103, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18361550

RESUMO

The performance of the M06 family of exchange-correlation potentials for describing the electronic structure and the Heisenberg magnetic coupling constant (J) is investigated using a set of representative open-shell systems involving two unpaired electrons. The set of molecular systems studied has well defined structures, and their magnetic coupling values are known experimentally. As a general trend, the M06 functional is about equally as accurate as B3LYP or PBE0. The performance of local functionals is important because of their economy and convenience for large-scale calculations; we find that M06-L local functional of the M06 family largely improves over the local spin density approximation and the generalized gradient approximation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA