Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EFSA J ; 22(8): e8953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39099617

RESUMO

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for vitamin E. As α-tocopherol is recognised as the only essential form of vitamin E, the Panel restricted its evaluation to α-tocopherol. Systematic reviews of the literature were conducted to assess evidence on priority adverse health effects of excess intake of vitamin E, namely risk of impaired coagulation and bleeding, cardiovascular disease and prostate cancer. The effect on blood clotting and associated increased risk of bleeding is considered as the critical effect to establish an UL for vitamin E. No new evidence has been published that could improve the characterisation of a dose-response. The ULs for vitamin E from all dietary sources, which were previously established by the Scientific Committee on Food, are retained for all population groups, i.e. 300 mg/day for adults, including pregnant and lactating women, 100 mg/day for children aged 1-3 years, 120 mg/day for 4-6 years, 160 mg/day for 7-10 years, 220 mg/day for 11-14 years and 260 mg/day for 15-17 years. A UL of 50 mg/day is established for infants aged 4-6 months and a UL of 60 mg/day for infants aged 7-11 months. ULs apply to all stereoisomeric forms of α-tocopherol. ULs do not apply to individuals receiving anticoagulant or antiplatelet medications (e.g. aspirin), to patients on secondary prevention for CVD or to patients with vitamin K malabsorption syndromes. It is unlikely that the ULs for vitamin E are exceeded in European populations, except for regular users of food supplements containing high doses of vitamin E.

2.
EFSA J ; 22(11): e9052, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39507293

RESUMO

Vitamins and essential minerals are micronutrients that are required for the normal functioning of the human body. However, they may lead to adverse health effects if consumed in excess. A tolerable upper intake level (UL) is a science-based reference value that supports policy-makers and other relevant actors in managing the risks of excess nutrient intake. EFSA's principles for establishing ULs for vitamins and minerals were originally developed by the Scientific Committee on Food in 2000. This guidance from the EFSA Panel on Nutrition, Novel Foods and Food Allergens provides an updated framework for UL assessments. A draft was published in 2022 and underwent a 2-year piloting period. The present document incorporates revisions based on the experience gained through its practical implementation. It covers aspects related to the planning of the risk assessment (problem formulation and definition of methods) and its implementation (evidence retrieval, appraisal, synthesis, integration, uncertainty analysis). As in the previous framework, the general principles developed for the risk assessment of chemicals in food are applied, i.e. hazard identification, hazard characterisation, intake assessment, risk characterisation. Specific to nutrients are their biochemical and physiological roles and the specific and selective mechanisms that maintain the systemic homeostasis and accumulation of the nutrient in the body. Such considerations must also be taken into account when conducting risk assessments of nutrients.

3.
EFSA J ; 22(6): e8819, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868106

RESUMO

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for iron. Systematic reviews were conducted to identify evidence regarding high iron intakes and risk of chronic diseases, adverse gastrointestinal effects and adverse effects of iron supplementation in infancy, young childhood and pregnancy. It is established that systemic iron overload leads to organ toxicity, but no UL could be established. The only indicator for which a dose-response could be established was black stools, which reflect the presence of large amounts of unabsorbed iron in the gut. This is a conservative endpoint among the chain of events that may lead to systemic iron overload but is not adverse per se. Based on interventions in which black stools did not occur at supplemental iron intakes of 20-25 mg/day (added to a background intake of 15 mg/day), a safe level of intake for iron of 40 mg/day for adults (including pregnant and lactating women) was established. Using allometric scaling (body weight0.75), this value was scaled down to children and adolescents and safe levels of intakes between 10 mg/day (1-3 years) and 35 mg/day (15-17 years) were derived. For infants 7-11 months of age who have a higher iron requirement than young children, allometric scaling was applied to the supplemental iron intakes (i.e. 25 mg/day) and resulted in a safe level of supplemental iron intake of 5 mg/day. This value was extended to 4-6 month-old infants and refers to iron intakes from fortified foods and food supplements, not from infant and follow-on formulae. The application of the safe level of intake is more limited than a UL because the intake level at which the risk of adverse effects starts to increase is not defined.

4.
EFSA J ; 21(12): e8413, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075631

RESUMO

Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for manganese. Systematic reviews of the literature of human and animal data were conducted to assess evidence regarding excess manganese intake (including authorised manganese salts) and the priority adverse health effect, i.e. manganese-induced neurotoxicity. Available human and animal studies support neurotoxicity as a critical effect, however, data are not sufficient and suitable to characterise a dose-response relationship and identify a reference point for manganese-induced neurotoxicity. In the absence of adequate data to establish an UL, estimated background dietary intakes (i.e. manganese intakes from natural dietary sources only) observed among high consumers (95th percentile) were used to provide an indication of the highest level of intake where there is reasonable confidence on the absence of adverse effects. A safe level of intake of 8 mg/day was established for adults ≥ 18 years (including pregnant and lactating women) and ranged between 2 and 7 mg/day for other population groups. The application of the safe level of intake is more limited than an UL because the intake level at which the risk of adverse effects starts to increase is not defined.

5.
EFSA J ; 21(1): e07704, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698500

RESUMO

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for selenium. Systematic reviews of the literature were conducted to identify evidence regarding excess selenium intake and clinical effects and potential biomarkers of effect, risk of chronic diseases and impaired neuropsychological development in humans. Alopecia, as an early observable feature and a well-established adverse effect of excess selenium exposure, is selected as the critical endpoint on which to base a UL for selenium. A lowest-observed-adverse-effect-level (LOAEL) of 330 µg/day is identified from a large randomised controlled trial in humans (the Selenium and Vitamin E Cancer Prevention Trial (SELECT)), to which an uncertainty factor of 1.3 is applied. A UL of 255 µg/day is established for adult men and women (including pregnant and lactating women). ULs for children are derived from the UL for adults using allometric scaling (body weight0.75). Based on available intake data, adult consumers are unlikely to exceed the UL, except for regular users of food supplements containing high daily doses of selenium or regular consumers of Brazil nuts. No risk has been reported with the current levels of selenium intake in European countries from food (excluding food supplements) in toddlers and children, and selenium intake arising from the natural content of foods does not raise reasons for concern. Selenium-containing supplements in toddlers and children should be used with caution, based on individual needs.

6.
EFSA J ; 21(11): e08353, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965303

RESUMO

Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for folic acid/folate. Systematic reviews of the literature were conducted to assess evidence on priority adverse health effects of excess intake of folate (including folic acid and the other authorised forms, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts), namely risk of cobalamin-dependent neuropathy, cognitive decline among people with low cobalamin status, and colorectal cancer and prostate cancer. The evidence is insufficient to conclude on a positive and causal relationship between the dietary intake of folate and impaired cognitive function, risk of colorectal and prostate cancer. The risk of progression of neurological symptoms in cobalamin-deficient patients is considered as the critical effect to establish an UL for folic acid. No new evidence has been published that could improve the characterisation of the dose-response between folic acid intake and resolution of megaloblastic anaemia in cobalamin-deficient individuals. The ULs for folic acid previously established by the Scientific Committee on Food are retained for all population groups, i.e. 1000 µg/day for adults, including pregnant and lactating women, 200 µg/day for children aged 1-3 years, 300 µg/day for 4-6 years, 400 µg/day for 7-10 years, 600 µg/day for 11-14 years and 800 µg/day for 15-17 years. A UL of 200 µg/day is established for infants aged 4-11 months. The ULs apply to the combined intake of folic acid, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts, under their authorised conditions of use. It is unlikely that the ULs for supplemental folate are exceeded in European populations, except for regular users of food supplements containing high doses of folic acid/5-methyl-tetrahydrofolic acid salts.

7.
EFSA J ; 21(1): e07728, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694841

RESUMO

Copper is an essential micronutrient and also a regulated product used in organic and in conventional farming pest management. Both deficiency and excessive exposure to copper can have adverse health effects. In this Scientific Opinion, the EFSA 2021 harmonised approach for establishing health-based guidance values (HBGVs) for substances that are regulated products and also nutrients was used to resolve the divergent existing HBGVs for copper. The tightly regulated homeostasis prevents toxicity manifestation in the short term, but the development of chronic copper toxicity is dependent on copper homeostasis and its tissue retention. Evidence from Wilson disease suggests that hepatic retention is indicative of potential future and possibly sudden onset of copper toxicity under conditions of continuous intake. Hence, emphasis was placed on copper retention as an early marker of potential adverse effects. The relationships between (a) chronic copper exposure and its retention in the body, particularly the liver, and (b) hepatic copper concentrations and evidence of toxicity were examined. The Scientific Committee (SC) concludes that no retention of copper is expected to occur with intake of 5 mg/day and established an Acceptable Daily Intake (ADI) of 0.07 mg/kg bw. A refined dietary exposure assessment was performed, assessing contribution from dietary and non-dietary sources. Background copper levels are a significant source of copper. The contribution of copper from its use as plant protection product (PPP), food and feed additives or fertilisers is negligible. The use of copper in fertilisers or PPPs contributes to copper accumulation in soil. Infant formula and follow-on formula are important contributors to dietary exposure of copper in infants and toddlers. Contribution from non-oral sources is negligible. Dietary exposure to total copper does not exceed the HBGV in adolescents, adults, elderly and the very elderly. Neither hepatic copper retention nor adverse effects are expected to occur from the estimated copper exposure in children due to higher nutrient requirements related to growth.

8.
EFSA J ; 20(1): e200102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35106096

RESUMO

Vitamins and essential minerals are micronutrients that are essential for the normal functioning of the human body. However, they may lead to adverse health effects if consumed in excess. The concept of a tolerable upper intake level (UL) is a science-based reference value, which was introduced to support policy-makers and other relevant actors in managing the risks of excess nutrient intake. EFSA's principles for establishing ULs for vitamins and minerals were originally developed by the Scientific Committee on Food in 2000. Since then, experience has been gained and the scientific field developed. This guidance from the EFSA Panel on Nutrition, Novel Foods and Food Allergens provides an updated framework to support EFSA's UL assessments. It covers aspects related to the planning of the risk assessment (problem formulation and definition of methods) and its implementation (evidence retrieval, appraisal, synthesis, integration, uncertainty analysis). As in the previous framework, the general principles developed for the risk assessment of chemicals in food are applied (hazard identification, hazard characterisation, intake assessment, risk characterisation). Peculiar to nutrients are their biochemical and physiological roles and the specific and selective mechanisms that maintain the systemic homoeostasis and body burden of the nutrient. These must be considered when conducting a risk assessment of nutrients. This document constitutes a draft guidance that will be applied in EFSA's assessments during a 1-year pilot phase and be revised and complemented as necessary. Before finalisation of the guidance, a public consultation will be launched.

9.
EFSA J ; 20(2): e07074, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35251356

RESUMO

Following a request from five European Nordic countries, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was tasked to provide scientific advice on a tolerable upper intake level (UL) or a safe level of intake for dietary (total/added/free) sugars based on available data on chronic metabolic diseases, pregnancy-related endpoints and dental caries. Specific sugar types (fructose) and sources of sugars were also addressed. The intake of dietary sugars is a well-established hazard in relation to dental caries in humans. Based on a systematic review of the literature, prospective cohort studies do not support a positive relationship between the intake of dietary sugars, in isocaloric exchange with other macronutrients, and any of the chronic metabolic diseases or pregnancy-related endpoints assessed. Based on randomised control trials on surrogate disease endpoints, there is evidence for a positive and causal relationship between the intake of added/free sugars and risk of some chronic metabolic diseases: The level of certainty is moderate for obesity and dyslipidaemia (> 50-75% probability), low for non-alcoholic fatty liver disease and type 2 diabetes (> 15-50% probability) and very low for hypertension (0-15% probability). Health effects of added vs. free sugars could not be compared. A level of sugars intake at which the risk of dental caries/chronic metabolic diseases is not increased could not be identified over the range of observed intakes, and thus, a UL or a safe level of intake could not be set. Based on available data and related uncertainties, the intake of added and free sugars should be as low as possible in the context of a nutritionally adequate diet. Decreasing the intake of added and free sugars would decrease the intake of total sugars to a similar extent. This opinion can assist EU Member States in setting national goals/recommendations.

10.
EFSA J ; 19(3): e06479, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747231

RESUMO

This Statement presents a proposal for harmonising the establishment of Health-Based Guidance Values (HBGVs) for regulated products that are also nutrients. This is a recurrent issue for food additives and pesticides, and may occasionally occur for other regulated products. The Statement describes the specific considerations that should be followed for establishing the HBGVs during the assessment of a regulated product that is also a nutrient. It also addresses the elements to be considered in the intake assessment; and proposes a decision tree for ensuring a harmonised process for the risk characterisation of regulated products that are also nutrients. The Scientific Committee recommends the involvement of the relevant EFSA Panels and units, in order to ensure an integrated and harmonised approach for the hazard and risk characterisation of regulated products that are also nutrients, considering the intake from all relevant sources.

11.
EFSA J ; 19(3): e06555, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791039

RESUMO

[Table: see text] Following the adoption of Regulation (EU) 2015/2283 on novel foods, the European Commission requested EFSA develop scientific and technical guidance for the preparation and submission of applications for authorisation of novel foods. This guidance presents a common format for the organisation of the information to be presented by the applicant when preparing a well-structured application to demonstrate the safety of the novel food. It outlines the data needed for the safety assessments of novel foods. Requirements relate to the description of the novel food, production process, compositional data, specification, proposed uses and use levels, and anticipated intake of the novel food. Further sections on the history of use of the novel food and/or its source, absorption, distribution, metabolism, excretion, nutritional information, toxicological information and allergenicity should be considered by the applicant by default. If not covered in the application, this should be justified. The applicant should integrate the data presented in the different sections to provide their overall considerations on how the information supports the safety of the novel food under the proposed conditions of use. Where potential health hazards have been identified, they should be discussed in relation to the anticipated intakes of the novel food and the proposed target populations. On the basis of the information provided, EFSA will assess the safety of the novel food under the proposed conditions of use. This guidance was originally adopted in 2016.It has beenrevised to informapplicants of the new provisions introduced by Regulation (EC) No 178/2002, as amended by Regulation (EU) 2019/1381 on the transparency and sustainability of the EU risk assessment in the food chain.This revised guidance applies to all dossiers submitted as of 27 March 2021. The 2016 version of this guidance remains applicable to applications submitted before 27 March 2021.

12.
EFSA J ; 19(3): e06557, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33791041

RESUMO

[Table: see text] Following the adoption of Regulation (EU) 2015/2283 on Novel Foods, the European Commission requested EFSA to develop a scientific and technical guidance for the preparation and submission of notifications for traditional foods from third countries. This guidance presents a common format for the organisation of the information to be presented by applicant for the preparation of a well-structured dossier. The safety of a traditional food should be substantiated by reliable data on its composition, its experience of continued use and its proposed conditions of use. Its normal consumption should not be nutritionally disadvantageous. This guidance is also intended to support applicants in providing the type and quality of information EU Member States and EFSA need for the assessments of traditional foods from third countries. The applicant should integrate the information on the composition and the experience of continued use and provide a concise overall consideration on how this substantiates the history of safe use of the traditional food and how this relates to the proposed conditions of use for the EU. Where potential health hazards have been identified on the basis of the composition and/or data from the experience of continued use, they should be discussed. On the basis of the information provided, EFSA will assess the safety related to the consumption of the traditional food under the proposed conditions of use. This guidance was originally adopted by the NDA Panel in 2016. It has been revised in 2020 to inform applicants of the new provisions introduced by Regulation (EC) No 178/2002, as amended by Regulation (EU) 2019/1381 on the transparency and sustainability of the EU risk assessment in the food chain.It is applicable to allnotifications and applications submitted as of 27 March 2021. The 2016 version remains applicable to notifications and applications submitted before 27 March 2021.

13.
EFSA J ; 19(11): e06843, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804232

RESUMO

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of an extension of use of the novel food (NF) nicotinamide riboside chloride (NRC) pursuant to Regulation (EU) 2015/2283. The assessment addresses the use of NRC in 'meal replacement products' and 'nutritional drink mixes' at levels up to 300 mg/day for the general population, and in food for special medical purposes (FSMP) and total diet replacement for weight control (TDRWC) (as per Regulation (EU) No 609/2013) at levels up to 500 mg/day in adults. Benchmark dose modelling was carried out on data from the 90-day oral toxicity studies in rats relevant to the safety assessment. Considering the lack of tolerable upper intake level (UL) for nicotinamide in infants and the narrow margin of exposure between the estimated intake in infants and the lower confidence bound of the benchmark doses (BMDL 05) estimated by the models, the Panel concludes that the safety of the NF has not been established for use in 'meal replacement products' and 'nutritional drink mixes' under the proposed conditions of use. For FSMP and TDRWC, the proposed maximum use level corresponds to an intake of 210 mg nicotinamide per day, which is below the current UL for nicotinamide of 900 mg/day for adults. The Panel considers that the NF is as safe as pure nicotinamide for use in FSMP and TDRWC. The Panel, however, notes experimental data which indicate several pathways by which intakes of nicotinamide (or its precursors), at levels that are substantially higher than the physiological requirement, might cause adverse effects. The Panel considers that further investigations are required and that a re-evaluation of the UL for nicotinamide may be warranted.

14.
EFSA J ; 17(9): e05779, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32626426

RESUMO

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) has derived dietary reference values (DRVs) for chloride. There are no appropriate biomarkers of chloride status, no balance studies and no adequate evidence on the relationship between chloride intake and health outcomes that can be used to set DRVs for chloride. There is a close relationship between sodium and chloride balances in the body. Sodium chloride is the main source of both electrolytes in European diets and similar urinary excretion levels of sodium and chloride (on a molar basis) are typically observed in Western populations. Hence, the Panel considered that reference values for chloride can be set at values equimolar to the reference values for sodium for all population groups, and are as follows: 1.7 g/day for children aged 1-3 years, 2.0 g/day for children aged 4-6 years, 2.6 g/day for children aged 7-10 years, 3.1 g/day for children aged 11-17 years and 3.1 g/day for adults including pregnant and lactating women. Consistent with the reference values for sodium, these levels of chloride intake are considered to be safe and adequate for the general EU population, under the consideration that the main dietary source of chloride intake is sodium chloride. For infants aged 7-11 months, an adequate intake of 0.3 g/day is set.

15.
EFSA J ; 17(9): e05778, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32626425

RESUMO

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) derived dietary reference values (DRVs) for sodium. Evidence from balance studies on sodium and on the relationship between sodium intake and health outcomes, in particular cardiovascular disease (CVD)-related endpoints and bone health, was reviewed. The data were not sufficient to enable an average requirement (AR) or population reference intake (PRI) to be derived. However, by integrating the available evidence and associated uncertainties, the Panel considers that a sodium intake of 2.0 g/day represents a level of sodium for which there is sufficient confidence in a reduced risk of CVD in the general adult population. In addition, a sodium intake of 2.0 g/day is likely to allow most of the general adult population to maintain sodium balance. Therefore, the Panel considers that 2.0 g sodium/day is a safe and adequate intake for the general EU population of adults. The same value applies to pregnant and lactating women. Sodium intakes that are considered safe and adequate for children are extrapolated from the value for adults, adjusting for their respective energy requirement and including a growth factor, and are as follows: 1.1 g/day for children aged 1-3 years, 1.3 g/day for children aged 4-6 years, 1.7 g/day for children aged 7-10 years and 2.0 g/day for children aged 11-17 years, respectively. For infants aged 7-11 months, an Adequate Intake (AI) of 0.2 g/day is proposed based on upwards extrapolation of the estimated sodium intake in exclusively breast-fed infants aged 0-6 months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA