Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 610(7930): 182-189, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131013

RESUMO

Most current therapies that target plasma membrane receptors function by antagonizing ligand binding or enzymatic activities. However, typical mammalian proteins comprise multiple domains that execute discrete but coordinated activities. Thus, inhibition of one domain often incompletely suppresses the function of a protein. Indeed, targeted protein degradation technologies, including proteolysis-targeting chimeras1 (PROTACs), have highlighted clinically important advantages of target degradation over inhibition2. However, the generation of heterobifunctional compounds binding to two targets with high affinity is complex, particularly when oral bioavailability is required3. Here we describe the development of proteolysis-targeting antibodies (PROTABs) that tether cell-surface E3 ubiquitin ligases to transmembrane proteins, resulting in target degradation both in vitro and in vivo. Focusing on zinc- and ring finger 3 (ZNRF3), a Wnt-responsive ligase, we show that this approach can enable colorectal cancer-specific degradation. Notably, by examining a matrix of additional cell-surface E3 ubiquitin ligases and transmembrane receptors, we demonstrate that this technology is amendable for 'on-demand' degradation. Furthermore, we offer insights on the ground rules governing target degradation by engineering optimized antibody formats. In summary, this work describes a strategy for the rapid development of potent, bioavailable and tissue-selective degraders of cell-surface proteins.


Assuntos
Anticorpos , Especificidade de Anticorpos , Proteínas de Membrana , Proteólise , Ubiquitina-Proteína Ligases , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Neoplasias Colorretais/metabolismo , Ligantes , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(46): e2207327119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343233

RESUMO

Developing peptide-based tools to fine-tune growth signaling pathways, in particular molecules with exquisite selectivity and high affinities, opens up opportunities for cellular reprogramming in tissue regeneration. Here, we present a library based on cystine-knot peptides (CKPs) that incorporate multiple loops for randomization and selection via directed evolution. Resulting binders could be assembled into multimeric structures to fine-tune cellular signaling. An example is presented for the Wnt pathway, which plays a key role in the homeostasis and regeneration of tissues such as lung, skin, and intestine. We discovered picomolar affinity CKP agonists of the human LPR6 receptor by exploring the limits of the topological manipulation of LRP6 dimerization. Structural analyses revealed that the agonists bind at the first ß-propeller domain of LRP6, mimicking the natural Wnt inhibitors DKK1 and SOST. However, the CKP agonists exhibit a different mode of action as they amplify the signaling of natural Wnt ligands but do not activate the pathway by themselves. In an alveolosphere organoid model, the CKP agonists induced alveolar stem cell activity. They also stimulated growth in primary human intestinal organoids. The approach described here advances the important frontier of next-generation agonist design and could be applied to other signaling pathways to discover tunable agonist ligands.


Assuntos
Via de Sinalização Wnt , beta Catenina , Humanos , beta Catenina/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Wnt/metabolismo , Cistina , Ligantes , Peptídeos
4.
Nature ; 559(7712): 120-124, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950720

RESUMO

OTULIN (OTU deubiquitinase with linear linkage specificity) removes linear polyubiquitin from proteins that have been modified by LUBAC (linear ubiquitin chain assembly complex) and is critical for preventing auto-inflammatory disease1,2 and embryonic lethality during mouse development3. Here we show that OTULIN promotes rather than counteracts LUBAC activity by preventing its auto-ubiquitination with linear polyubiquitin. Thus, knock-in mice that express catalytically inactive OTULIN, either constitutively or selectively in endothelial cells, resembled LUBAC-deficient mice4 and died midgestation as a result of cell death mediated by TNFR1 (tumour necrosis factor receptor 1) and the kinase activity of RIPK1 (receptor-interacting protein kinase 1). Inactivation of OTULIN in adult mice also caused pro-inflammatory cell death. Accordingly, embryonic lethality and adult auto-inflammation were prevented by the combined loss of cell death mediators: caspase 8 for apoptosis and RIPK3 for necroptosis. Unexpectedly, OTULIN mutant mice that lacked caspase 8 and RIPK3 died in the perinatal period, exhibiting enhanced production of type I interferon that was dependent on RIPK1. Collectively, our results indicate that OTULIN and LUBAC function in a linear pathway, and highlight a previously unrecognized interaction between linear ubiquitination, regulators of cell death, and induction of type I interferon.


Assuntos
Morte Celular , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Inflamação/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação , Animais , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/genética , Enzimas Desubiquitinantes/genética , Perda do Embrião/genética , Endopeptidases/genética , Inflamação/enzimologia , Inflamação/genética , Interferon Tipo I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ubiquitinação/genética , Redução de Peso/genética
5.
Nature ; 543(7647): 676-680, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358093

RESUMO

Cancer stem cells (CSCs) have been hypothesized to represent the driving force behind tumour progression and metastasis, making them attractive cancer targets. However, conclusive experimental evidence for their functional relevance is still lacking for most malignancies. Here we show that the leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) identifies intestinal CSCs in mouse tumours engineered to recapitulate the clinical progression of human colorectal cancer. We demonstrate that selective Lgr5+ cell ablation restricts primary tumour growth, but does not result in tumour regression. Instead, tumours are maintained by proliferative Lgr5- cells that continuously attempt to replenish the Lgr5+ CSC pool, leading to rapid re-initiation of tumour growth upon treatment cessation. Notably, CSCs are critical for the formation and maintenance of liver metastasis derived from colorectal cancers. Together, our data highlight distinct CSC dependencies for primary versus metastasic tumour growth, and suggest that targeting CSCs may represent a therapeutic opportunity for managing metastatic disease.


Assuntos
Neoplasias Colorretais/patologia , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Separação Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Injeções Subcutâneas , Intestinos/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos , Metástase Neoplásica/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Organoides/patologia , Organoides/transplante , Receptores Acoplados a Proteínas G/análise
6.
Nature ; 529(7584): 97-100, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26700806

RESUMO

Colorectal cancer remains a major unmet medical need, prompting large-scale genomics efforts in the field to identify molecular drivers for which targeted therapies might be developed. We previously reported the identification of recurrent translocations in R-spondin genes present in a subset of colorectal tumours. Here we show that targeting RSPO3 in PTPRK-RSPO3-fusion-positive human tumour xenografts inhibits tumour growth and promotes differentiation. Notably, genes expressed in the stem-cell compartment of the intestine were among those most sensitive to anti-RSPO3 treatment. This observation, combined with functional assays, suggests that a stem-cell compartment drives PTPRK-RSPO3 colorectal tumour growth and indicates that the therapeutic targeting of stem-cell properties within tumours may be a clinically relevant approach for the treatment of colorectal tumours.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Trombospondinas/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Divisão Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Progressão da Doença , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trombospondinas/antagonistas & inibidores , Trombospondinas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Chem Biol ; 14(6): 582-590, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29632413

RESUMO

Regeneration of the adult intestinal epithelium is mediated by a pool of cycling stem cells, which are located at the base of the crypt, that express leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5). The Frizzled (FZD) 7 receptor (FZD7) is enriched in LGR5+ intestinal stem cells and plays a critical role in their self-renewal. Yet, drug discovery approaches and structural bases for targeting specific FZD isoforms remain poorly defined. FZD proteins interact with Wnt signaling proteins via, in part, a lipid-binding groove on the extracellular cysteine-rich domain (CRD) of the FZD receptor. Here we report the identification of a potent peptide that selectively binds to the FZD7 CRD at a previously uncharacterized site and alters the conformation of the CRD and the architecture of its lipid-binding groove. Treatment with the FZD7-binding peptide impaired Wnt signaling in cultured cells and stem cell function in intestinal organoids. Together, our data illustrate that targeting the lipid-binding groove holds promise as an approach for achieving isoform-selective FZD receptor inhibition.


Assuntos
Receptores Frizzled/antagonistas & inibidores , Receptores Frizzled/metabolismo , Intestinos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Sítios de Ligação , Células CHO , Membrana Celular/metabolismo , Cricetulus , Cristalografia por Raios X , Descoberta de Drogas , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Intestinos/citologia , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Regeneração , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/patologia , Ressonância de Plasmônio de Superfície , Via de Sinalização Wnt
8.
Nat Chem Biol ; 14(9): 902, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29728602

RESUMO

The version of this article originally published contained older versions of the Life Sciences Reporting Summary and the Supplementary Text and Figures. The error has been corrected in the HTML and PDF versions of the article.

9.
Gut ; 65(4): 575-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26511795

RESUMO

OBJECTIVE: Pneumonia accounts for more deaths than any other infectious disease worldwide. The intestinal microbiota supports local mucosal immunity and is increasingly recognised as an important modulator of the systemic immune system. The precise role of the gut microbiota in bacterial pneumonia, however, is unknown. Here, we investigate the function of the gut microbiota in the host defence against Streptococcus pneumoniae infections. DESIGN: We depleted the gut microbiota in C57BL/6 mice and subsequently infected them intranasally with S. pneumoniae. We then performed survival and faecal microbiota transplantation (FMT) experiments and measured parameters of inflammation and alveolar macrophage whole-genome responses. RESULTS: We found that the gut microbiota protects the host during pneumococcal pneumonia, as reflected by increased bacterial dissemination, inflammation, organ damage and mortality in microbiota-depleted mice compared with controls. FMT in gut microbiota-depleted mice led to a normalisation of pulmonary bacterial counts and tumour necrosis factor-α and interleukin-10 levels 6 h after pneumococcal infection. Whole-genome mapping of alveolar macrophages showed upregulation of metabolic pathways in the absence of a healthy gut microbiota. This upregulation correlated with an altered cellular responsiveness, reflected by a reduced responsiveness to lipopolysaccharide and lipoteichoic acid. Compared with controls, alveolar macrophages derived from gut microbiota-depleted mice showed a diminished capacity to phagocytose S. pneumoniae. CONCLUSIONS: This study identifies the intestinal microbiota as a protective mediator during pneumococcal pneumonia. The gut microbiota enhances primary alveolar macrophage function. Novel therapeutic strategies could exploit the gut-lung axis in bacterial infections.


Assuntos
Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas , Pneumonia Pneumocócica/imunologia , Animais , Antibacterianos/farmacologia , Carga Bacteriana , Fezes/microbiologia , Interleucina-10/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Sepse/imunologia , Sepse/metabolismo , Sepse/microbiologia , Streptococcus pneumoniae/imunologia , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
10.
J Pathol ; 237(4): 508-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235356

RESUMO

CDK8 is a dissociable kinase module of the Mediator complex and has been shown to play an important role in transcriptional regulation in organisms as diverse as yeast and humans. Recent studies suggest that CDK8 functions as an oncoprotein in melanoma and colon cancer. Importantly, these studies were conducted using in vitro cell line models and the role of CDK8 in tumourigenesis in vivo has not been explored. We have generated a mouse with a Cdk8 conditional knockout allele and examined the consequences of Cdk8 loss on normal tissue homeostasis and tumour development in vivo. Cdk8 deletion in the young adult mouse did not induce any gross or histopathological abnormalities, implying that Cdk8 is largely dispensable for somatic cellular homeostasis. In contrast, Cdk8 deletion in the Apc(Min) intestinal tumour model shortened the animals' survival and increased tumour burden. Although Cdk8 deletion did not affect tumour initiation, intestinal tumour size and growth rate were significantly increased in Cdk8-null animals. Transcriptome analysis performed on Cdk8-null intestinal cells revealed up-regulation of genes that are governed by the Polycomb group (PcG) complex. In support of these findings, Cdk8-null intestinal cells and tumours displayed a reduction in histone H3K27 trimethylation, both globally and at the promoters of a number of PcG-regulated genes involved in oncogenic signalling. Together, our findings uncover a tumour suppressor function for CDK8 in vivo and suggest that the role of CDK8 activity in driving oncogenesis is context-specific. Sequencing data were deposited at GEO (Accession No. GSE71385).


Assuntos
Carcinogênese/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Quinase 8 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica/genética , Animais , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste , Imunofluorescência , Genes APC , Genes Supressores de Tumor , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 2/metabolismo , Reação em Cadeia da Polimerase
11.
EMBO Rep ; 14(8): 686-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23846313

RESUMO

Cancers of various organs have been categorized into distinct subtypes after increasingly sophisticated taxonomies. Additionally, within a seemingly homogeneous subclass, individual cancers contain diverse tumour cell populations that vary in important cancer-specific traits such as clonogenicity and invasive potential. Differences that exist between and within a given tumour type have hampered significantly both the proper selection of patients that might benefit from therapy, as well as the development of new targeted agents. In this review, we discuss the differences associated with organ-specific cancer subtypes and the factors that contribute to intra-tumour heterogeneity. It is of utmost importance to understand the biological causes that distinguish tumours as well as distinct tumour cell populations within malignancies, as these will ultimately point the way to more rational anti-cancer treatments.


Assuntos
Heterogeneidade Genética , Proteínas de Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Diferenciação Celular , Evolução Clonal , Células Clonais , Expressão Gênica , Humanos , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Especificidade de Órgãos , Microambiente Tumoral
12.
Lancet Oncol ; 13(2): e83-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22300863

RESUMO

During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population that drives growth and progression. Many efforts have been made to design therapies that specifically target the CSC population, since this was predicted to be the crucial population to eliminate. However, recent insights have complicated the initial elegant model, by showing a dominant role for the tumour microenvironment in determining CSC characteristics within a malignancy. This is particularly important since dedifferentiation of non-tumorigenic tumour cells towards CSCs can occur, and therefore the CSC population in a neoplasm is expected to vary over time. Moreover, evidence suggests that not all tumours are driven by rare CSCs, but might instead contain a large population of tumorigenic cells. Even though these results suggest that specific targeting of the CSC population might not be a useful therapeutic strategy, research into the hierarchical cellular organisation of malignancies has provided many important new insights in the biology of tumours. In this Personal View, we highlight how the CSC concept is developing and influences our thinking on future treatment for solid tumours, and recommend ways to design clinical trials to assess drugs that target malignant disease in a rational fashion.


Assuntos
Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética , Desdiferenciação Celular/genética , Ensaios Clínicos como Assunto , Progressão da Doença , Desenho de Fármacos , Humanos , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo
13.
ACS Chem Biol ; 18(4): 772-784, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36893429

RESUMO

Wnt ligands are critical for tissue homeostasis and form a complex with LRP6 and frizzled coreceptors to initiate Wnt/ß-catenin signaling. Yet, how different Wnts achieve various levels of signaling activation through distinct domains on LRP6 remains elusive. Developing tool ligands that target individual LRP6 domains could help elucidate the mechanism of Wnt signaling regulation and uncover pharmacological approaches for pathway modulation. We employed directed evolution of a disulfide constrained peptide (DCP) to identify molecules that bind to the third ß-propeller domain of LRP6. The DCPs antagonize Wnt3a while sparing Wnt1 signaling. Using PEG linkers with different geometries, we converted the Wnt3a antagonist DCPs to multivalent molecules that potentiated Wnt1 signaling by clustering the LRP6 coreceptor. The mechanism of potentiation is unique as it occurred only in the presence of extracellular secreted Wnt1 ligand. While all DCPs recognized a similar binding interface on LRP6, they displayed different spatial orientations that influenced their cellular activities. Moreover, structural analyses revealed that the DCPs exhibited new folds that were distinct from the parent DCP framework they were evolved from. The multivalent ligand design principles highlighted in this study provide a path for developing peptide agonists that modulate different branches of cellular Wnt signaling.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas Wnt , Ligantes , Proteínas Wnt/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , beta Catenina/metabolismo , Ligação Proteica , Via de Sinalização Wnt , Peptídeos/farmacologia , Peptídeos/metabolismo
14.
Cell Chem Biol ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056465

RESUMO

Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.

15.
Nat Commun ; 14(1): 5945, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741832

RESUMO

Microsatellite-stable colorectal cancer (MSS-CRC) is highly refractory to immunotherapy. Understanding tumor-intrinsic determinants of immunotherapy resistance is critical to improve MSS-CRC patient outcomes. Here, we demonstrate that high tumor expression of the core autophagy gene ATG16L1 is associated with poor clinical response to anti-PD-L1 therapy in KRAS-mutant tumors from IMblaze370 (NCT02788279), a large phase III clinical trial of atezolizumab (anti-PD-L1) in advanced metastatic MSS-CRC. Deletion of Atg16l1 in engineered murine colon cancer organoids inhibits tumor growth in primary (colon) and metastatic (liver and lung) niches in syngeneic female hosts, primarily due to increased sensitivity to IFN-γ-mediated immune pressure. ATG16L1 deficiency enhances programmed cell death of colon cancer organoids induced by IFN-γ and TNF, thus increasing their sensitivity to host immunity. In parallel, ATG16L1 deficiency reduces tumor stem-like populations in vivo independently of adaptive immune pressure. This work reveals autophagy as a clinically relevant mechanism of immune evasion and tumor fitness in MSS-CRC and provides a rationale for autophagy inhibition to boost immunotherapy responses in the clinic.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Feminino , Humanos , Camundongos , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Genes Reguladores , Fígado , Ensaios Clínicos Fase III como Assunto
16.
Nat Commun ; 13(1): 5478, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36117191

RESUMO

Most colorectal (CRC) tumors are dependent on EGFR/KRAS/BRAF/MAPK signaling activation. ARID1A is an epigenetic regulator mutated in approximately 5% of non-hypermutated CRC tumors. Here we show that anti-EGFR but not anti-VEGF treatment enriches for emerging ARID1A mutations in CRC patients. In addition, we find that patients with ARID1A mutations, at baseline, are associated with worse outcome when treated with cetuximab- but not bevacizumab-containing therapies; thus, this suggests that ARID1A mutations may provide both an acquired and intrinsic mechanism of resistance to anti-EGFR therapies. We find that, ARID1A and EGFR-pathway genetic alterations are mutually exclusive across lung and colorectal cancers, further supporting a functional connection between these pathways. Our results not only suggest that ARID1A could be potentially used as a predictive biomarker for cetuximab treatment decisions but also provide a rationale for exploring therapeutic MAPK inhibition in an unexpected but genetically defined segment of CRC patients.


Assuntos
Antineoplásicos Imunológicos , Cetuximab , Neoplasias Colorretais , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/efeitos adversos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética
17.
Cell Stem Cell ; 26(6): 797-799, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502398

RESUMO

In this issue of Cell Stem Cell, Morral et al. (2020) shed new light on the hierarchical organization of cells within colorectal cancer. They show that tumor cells at the apex of this hierarchy reside in particular tumor zones and possess high protein synthesis activity. Interference with their biosynthetic activity results in an irreversible growth arrest of CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , DNA Ribossômico , Humanos , Células-Tronco Neoplásicas
18.
Methods Mol Biol ; 2171: 331-346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705654

RESUMO

Colorectal cancer (CRC) related death has often been attributed to the presence of metastatic disseminated disease. A concise understanding of the molecular mechanism(s) that drive metastatic progression is therefore needed but has thus far been hampered by the limited number of CRC mouse models that progress toward this disease stage. In addition, preclinical evaluation of therapeutic modalities aimed at managing metastatic disease also rests on the availability of relevant in vivo models that faithfully recapitulate the key molecular features of metastatic human CRC. To overcome these limitations, we have recently developed methodologies that enable the study of CRC progression at relevant orthotopic sites. Here, we provide a detailed methodology that describes the injection of CRC derived cell lines and organoids directly into the colorectal mucosa. This results in the growth of a single tumor mass within the colon, that can spontaneously metastasize to the liver. Furthermore, we also present a surgical procedure to directly inject cells into the portal venous circulation to induce CRC tumor growth in the liver without the requirement of a primary tumor.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Organoides/citologia , Animais , Modelos Animais de Doenças , Humanos , Organoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Stem Cell ; 24(1): 54-64, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595498

RESUMO

The intestinal epithelium is one the fastest renewing tissues in mammals and is endowed with extensive adaptability. The more traditional view of a hierarchical organization of the gut has recently given way to a more dynamic model in which various cell types within the intestinal epithelium can de-differentiate and function as an alternative source of stem cells upon tissue damage and stress conditions such as inflammation and tumorigenesis. Here, we will review the mechanistic principles and key players involved in intestinal plasticity and discuss potential therapeutic implications of cellular plasticity in regenerative medicine and cancer.


Assuntos
Carcinogênese/patologia , Plasticidade Celular , Homeostase , Mucosa Intestinal/citologia , Medicina Regenerativa , Animais , Humanos , Transdução de Sinais
20.
Clin Cancer Res ; 25(14): 4431-4442, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004000

RESUMO

PURPOSE: Four consensus molecular subtypes (CMS1-4) of colorectal cancer were identified in primary tumors and found to be associated with distinctive biological features and clinical outcomes. Given that distant metastasis largely accounts for colorectal cancer-related mortality, we examined the molecular and clinical attributes of CMS in metastatic colorectal cancer (mCRC). EXPERIMENTAL DESIGN: We developed a colorectal cancer-focused NanoString-based CMS classifier that is ideally suited to interrogate archival tissues. We successfully used this panel in the CMS classification of formalin-fixed paraffin-embedded (FFPE) tissues from mCRC cohorts, one of which is composed of paired primary tumors and metastases. Finally, we developed novel mouse implantation models to enable modeling of colorectal cancer in vivo at relevant sites. RESULTS: Using our classifier, we find that the biological hallmarks of mCRC, including CMS, are in general highly similar to those observed in nonmetastatic early-stage disease. Importantly, our data demonstrate that CMS1 has the worst outcome in relapsed disease, compared with other CMS. Assigning CMS to primary tumors and their matched metastases reveals mostly concordant subtypes between primary and metastasis. Molecular analysis of matched discordant pairs reveals differences in stromal composition at each site. The development of two novel in vivo orthotopic implantation models further reinforces the notion that extrinsic factors may impact on CMS identification in matched primary and metastatic colorectal cancer. CONCLUSIONS: We describe the utility of a NanoString panel for CMS classification of FFPE clinical samples. Our work reveals the impact of intrinsic and extrinsic factors on colorectal cancer heterogeneity during disease progression.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/classificação , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Tipagem Molecular/métodos , Mutação , Animais , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Estudos de Coortes , Neoplasias Colorretais/secundário , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Estadiamento de Neoplasias , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA