Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
J Virol ; 90(11): 5246-55, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984730

RESUMO

UNLABELLED: Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described. IMPORTANCE: Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses.


Assuntos
Acanthamoeba/virologia , Vesículas Citoplasmáticas/virologia , Vírus Gigantes/fisiologia , Internalização do Vírus , Animais , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Genoma Viral , Vírus Gigantes/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fagocitose , Filogenia , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura , Replicação Viral
3.
J Sports Med Phys Fitness ; 56(4): 368-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26393479

RESUMO

BACKGROUND: Peak oxygen consumption (VO2peak) is a fundamental parameter used to evaluate physical capacity. The objective of this study was to explore two types of incremental exercise tests used to determine VO2peak in four Paralympic swimmers: arm ergometer testing in the laboratory and testing in the swimming pool. METHODS: On two different days, the VO2peak values of the four athletes were measured in a swimming pool and by a cycle ergometer. The protocols identified the VO2peak by progressive loading until the volitional exhaustion maximum was reached. The results were analyzed using the paired Student's t-test, Cohen's d effect sizes and a linear regression. RESULTS: The results showed that the VO2peak values obtained using the swimming pool protocol were higher (P=0.02) than those obtained by the arm ergometer (45.8±19.2 vs. 30.4±15.5; P=0.02), with a large effect size (d=3.20). When analyzing swimmers 1, 2, 3 and 4 individually, differences of 22.4%, 33.8%, 60.1% and 27.1% were observed, respectively. CONCLUSIONS: Field tests similar to the competitive setting are a more accurate way to determine the aerobic capacity of Paralympic swimmers. This approach provides more sensitive data that enable better direction of training, consequently facilitating improved performance.


Assuntos
Atletas , Pessoas com Deficiência , Teste de Esforço/métodos , Consumo de Oxigênio/fisiologia , Natação , Adulto , Brasil , Ergometria , Tolerância ao Exercício , Fadiga , Feminino , Humanos , Modelos Lineares , Masculino , Piscinas , Adulto Jovem
4.
Gut Pathog ; 4(1): 21, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23234341

RESUMO

BACKGROUND: Escherichia coli is believed to participate in the etiology of Crohn's disease (CD) and possibly of ulcerative colitis (UC), due at least in part to the observed rise in the number of these bacteria in the gut microbiota of CD and UC patients. Nevertheless, it is not fully understood whether this quantitative variation occurs equally throughout the mucosal and luminal spaces of the gut. To assess this question, stools and mucosa biopsies from distinct intestinal sites were cultured aiming at determining their E. coli concentration. The cultures were additionally screened for the presence of some virulence genes of pathogenic E. coli. RESULTS: Analyses of clinical materials from 14 controls (38 biopsies and 14 stools samples), 11 CD (25 biopsies and 11 stools samples) and 7 UC patients (18 biopsies and 7 stools samples) indicated no significant variation in the number of E. coli present in stools, but a rise of at least one log10 CFU/mg in biopsies from the ileum of CD patients and the sigmoid and rectum of CD and UC patients. The cultures were screened for the presence of E. coli attaching and effacing (eae), invasion plasmid antigen H (ipaH), aggregative adherence transcriptional activator (aggR), Shiga cytotoxins (stx), and heat labile enterotoxin (elt) and the following serine proteases autotransporters of Enterobacteriaceae (SPATE) genes: plasmid encoded toxin (pet), secreted autotransporter toxin (sat), Shigella extracellular protein (sepA), protein involved in intestinal colonization (pic) and Shigella IgA-like protease homolog (sigA). Six of the 10 genes screened were detected in the total of samples investigated: aggR, eae, pet, sat, sepA and sigA. No difference in the prevalence of any of these markers was observed in cultures from different clinical materials or groups of patients. METHODS: Bacterial quantitation was carried out following cultures of diluted samples suspensions in MacConkey agar, Wilkins Chalgren agar for anaerobes, E. coli/coliform chromocult agar, and blood agar. Screening for E. coli virulence genes was performed by multiplex PCR of DNA purified from total MacConkey undiluted broth cultures. CONCLUSION: In CD and UC patients only the mucosa associated population of E. coli is augmented and the proliferation is prominent in the ileum of CD and rectum and sigmoid of both UC and CD patients which are sites where the lesions usually are observed. The augmented E. coli population in these sites presented a low number of the virulence markers, possibly meaning that they are not relevant for the disease process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA