Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 39(6): 754-762, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33913177

RESUMO

Sepsis induces several metabolic abnormalities, including hypoglycaemia in the most advanced stage of the disease, a risk factor for complications and death. Although hypoglycaemia can be caused by inhibition of hepatic gluconeogenesis, decreased and increased gluconeogenesis were reported in sepsis. Furthermore, gluconeogenesis from glycerol was not yet evaluated in this disease. The main purpose of this study was to investigate the gluconeogenesis from alanine, lactate, pyruvate and glycerol in rats with early (8 hours) and late (18 hours) sepsis. Parameters related to the characterization of sepsis were also evaluated. Sepsis was induced by cecal ligation and puncture and gluconeogenesis was assessed in liver perfusion. Rats with early and late sepsis showed increased lactataemia, depletion of liver glycogen and peripheral insulin resistance, characterizing the establishment of sepsis. Rats with early and late sepsis showed decreased gluconeogenesis from alanine, lactate and pyruvate. Interestingly, gluconeogenesis from glycerol, a precursor that enters in the pathway at a later step, subsequent to the entry of alanine, lactate and pyruvate, was maintained in rats with early and late sepsis. In conclusion, gluconeogenesis is decreased from alanine, lactate and pyruvate, but maintained from glycerol, in liver perfusion of rats with early and late sepsis. SIGNIFICANCE OF THE STUDY: The maintenance of gluconeogenesis from glycerol, but not from alanine, lactate and pyruvate, together with the liver glycogen depletion, points the glycerol as an important precursor for the maintenance of glycaemic homeostasis in sepsis. The findings open the possibility of further investigation on the administration of glycerol in the treatment of hypoglycaemia associated with more advanced sepsis.


Assuntos
Alanina/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Ácido Pirúvico/metabolismo , Sepse/metabolismo , Animais , Gluconeogênese , Glicerol/metabolismo , Masculino , Perfusão , Ratos , Ratos Wistar
2.
Pharmacol Rep ; 75(6): 1571-1587, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804392

RESUMO

BACKGROUND: Insulin (INS) resistance and hypoinsulinemia commonly observed in cancer-carrying, can contribute to cachexia. However, the effects of INS and INS sensitizers, such as pioglitazone (PIO), particularly when used in combination therapy, on cancer cachexia have not been evaluated sufficiently. We investigated the effects of INS and PIO, at various doses, either isolated or combined, on cachexia in Walker-256 tumor-bearing rats (TB rats). METHODS: INS or INS + PIO were administered in TB rats, for 6 or 12 days, starting from the day of tumor cells inoculation. RESULTS: INS at 18 or 27 U/kg (12-days treatment), but not 9 U/kg, reduced fat loss and slightly prevented weight loss. However, INS 18 U/kg + PIO 5, 10, 20, or 40 mg/kg (6 or 12-day treatment) reduced fat loss and markedly prevented weight loss but did not affect muscle wasting. While TB rats lost weight (37.9% in 12 days), TB rats treated with INS 18 U/kg + PIO 5 mg/kg showed pronounced weight gain (73.7%), which was greater than the sum (synergism) of the weight gains promoted by isolated treatments with INS 18 U/kg (14.7%) or PIO 5 mg/kg (13.1%). The beneficial effect of the INS 18 U/kg + PIO 5 mg/kg on weight loss was associated with improved INS sensitivity, as indicated by the higher blood glucose clearance constant (kITT), decreased levels of free fatty acids and triacylglycerols (INS resistance-inducing factors) in the blood, and increased expression of p-Akt (INS signaling pathway protein) in adipose tissue. CONCLUSIONS: The combined treatment with INS 18 U/kg + PIO 5 mg/kg was more effective in preventing advanced cachexia in TB rats than each treatment alone, emerging as the best approach, considering the lower dosage and higher efficacy. This combination completely preserved adipose mass and markedly reduced weight loss through a synergistic mechanism linked to improved insulin sensitivity. These findings provide new insights into the importance of drug combinations in effectively combating fat loss in advanced cachexia.


Assuntos
Resistência à Insulina , Neoplasias , Tiazolidinedionas , Ratos , Animais , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Insulina , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/prevenção & controle , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Redução de Peso , Aumento de Peso , Neoplasias/tratamento farmacológico , Hipoglicemiantes/farmacologia
3.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 697-705, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128591

RESUMO

Lixisenatide, a glucagon-like peptide-1 receptor agonist, is used to stimulate insulin secretion in patients with type 2 diabetes mellitus. However, its effect on insulin secretion in cancer patients, particularly during the cachexia course, has not yet been evaluated. The purpose of this study was to investigate the lixisenatide effect on INS secretion decline during the cachexia course (2, 6, and 12 days of tumor) in pancreatic islets isolated from Walker-256 tumor-bearing rats. Pancreatic islets of healthy and tumor-bearing rats were incubated in the presence or absence of lixisenatide (10 nM). Tumor-bearing rats showed reduction of body weight and fat and muscle mass, characterizing the development of cachexia, as well as reduction of insulinemia and INS secretion stimulated by glucose (5.6, 8.3, 11.1, 16.7, and 20 mM) on days 2, 6, and/or 12 of tumor. Lixisenatide increased the 16.7 mM glucose-stimulated insulin secretion, but not by 5.6 mM glucose, in the islets of healthy rats, without changing the insulin intracellular content. However, lixisenatide did not prevent the decreased 16.7 mM glucose-stimulated insulin secretion in the pancreatic islets of rats with 2, 6, and 12 days of tumor and neither the decreased insulin intracellular content of rats with 12 days of tumor. In consistency, in vivo treatment with lixisenatide (50 µg kg-1, SC, once daily, for 6 days) visually increased insulinemia of healthy fasted rats, but did not prevent hypoinsulinemia of tumor-bearing rats. In conclusion, Walker-256 tumor-bearing rats showed early decline (2 days of tumor) of insulin secretion, which followed the cachexia course (6 and 12 days of tumor) and was not improved by lixisenatide, evidencing that this insulin secretagogue, used to treat type 2 diabetes, does not have beneficial effect in cancer bearing-rats.


Assuntos
Caquexia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Secreção de Insulina/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Caquexia/metabolismo , Insulina/sangue , Insulina/metabolismo , Masculino , Neoplasias/metabolismo , Ratos Wistar
4.
Life Sci ; 171: 68-74, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034669

RESUMO

AIM: The lipogenic effect of pioglitazone (PGZ), an insulin (INS) sensitizer, is well established. However, few studies have evaluated PGZ effects in preventing weight loss in cancer. We investigated PGZ effects, alone or associated with INS, on INS resistance, cachexia and metabolic abnormalities induced by Walker-256 tumor in rats. MAIN METHODS: PGZ (5.0mg·kg-1, oral) or PGZ+INS (NPH, 1.0UI·kg-1, sc), were once-daily administered during 12days, starting on the day inoculation of Walker-256 tumor cells. Rats were separated in small (about 17g) and big (about 30g) tumor-bearing. KEY FINDINGS: Big tumor-bearing rats showed greater cachexia, blood triacylglycerol and free fatty acids and INS resistance. PGZ and PGZ+INS treatments did not change tumor growth and food intake, but reduced several abnormalities such as INS resistance, increased blood free fatty acids, retroperitoneal fat wasting and body weight loss in small tumor-bearing rats. The prevention of retroperitoneal fat wasting did not involve reduction of tumor necrosis factor-α expression increased. In big tumor-bearing rats, PGZ and PGZ+INS treatments reversed the high blood triacylglycerol and free fatty acids levels, but had no effect on other parameters. SIGNIFICANCE: PGZ and PGZ+INS improved INS peripheral sensitivity, possibly by decreasing blood free fatty acids, and reduced fat tissue wasting and body weight loss in small tumor-bearing rats. The results suggest clinical benefits of PGZ in preventing INS resistance, adipose tissue wasting and weight loss when the tumor is small, i.e., in less severe cachexia.


Assuntos
Caquexia/tratamento farmacológico , Resistência à Insulina , Tiazolidinedionas/farmacologia , Redução de Peso/efeitos dos fármacos , Animais , Masculino , Pioglitazona , Ratos , Ratos Wistar , Tiazolidinedionas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA