Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Clin Oral Investig ; 25(5): 2925-2937, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33033921

RESUMO

OBJECTIVES: The present study aims to evaluate two protocols of pulsed electromagnetic field (PEMF) on osseointegration and establish one that addresses ideal parameters for its use in dentistry, especially in the optimization of the implants osseointegration process. MATERIALS AND METHODS: Sixty male rats (Wistar) were allocated into three experimental groups: control (GC), test A (GTA, 3 h exposed), and test B (GTB, 1 h exposed). All animals received titanium implants in both tibias, and PEMF application (15 Hz, ± 1 mT, 5 days/week) occurred only in the test groups. They were euthanized at 03, 07, 21, and 45 days after PEMF therapy. Removal torque, histomorphometric measurements, three-dimensional radiographic evaluation, and in vitro biological assay analyses were performed. RESULTS: GTB showed better results compared with GTA in removal torque tests, in bone volume and bone mineral density, cell viability, total protein content, and mineralization nodules (p < 0.05). GTA showed better performance in trabecular bone thickness and cell proliferation compared with GTB (p < 0.05), especially at osseointegration early periods. In the histomorphometric analysis and number of trabeculae, there were no differences in the test groups. CONCLUSION: PEMF as a biostimulator was effective in optimizing the events in bone tissue that lead to osseointegration, especially when applied for a shorter time and in the initial periods of bone healing. CLINICAL RELEVANCE: The PEMF therapy is an effective alternative method for optimizing bone healing.


Assuntos
Implantes Dentários , Osseointegração , Animais , Campos Eletromagnéticos , Masculino , Ratos , Ratos Wistar , Tíbia , Titânio
2.
J Mater Sci Mater Med ; 31(5): 41, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350625

RESUMO

Biomaterials may be useful in filling lost bone portions in order to restore balance and improve bone regeneration. The objective of this study was to produce polycaprolactone (PCL) membranes combined with two types of bioglass (Sol-Gel and melt-quenched) and determine their physical and biological properties. Membranes were produced through electrospinning. This study presented three experimental groups: pure PCL membranes, PCL-Melt-Bioglass and PCL-Sol-gel-Bioglass. Membranes were characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectrophotometry (FTIR), Energy-Dispersive Spectroscopy and Zeta Potential. The following in vitro tests were performed: MTT assay, alkaline phosphatase activity, total protein content and mineralization nodules. Twenty-four male rats were used to observe biological performance through radiographic, fracture energy, histological and histomorphometric analyses. The physical and chemical analysis results showed success in manufacturing bioactive membranes which significantly enhanced cell viability and osteoblast differentiation. The new formed bone from the in vivo experiment was similar to that observed in the control group. In conclusion, the electrospinning enabled preparing PCL membranes with bioglass incorporated into the structure and onto the surface of PCL fibers. The microstructure of the PCL membranes was influenced by the bioglass production method. Both bioglasses seem to be promising biomaterials to improve bone tissue regeneration when incorporated into PCL.


Assuntos
Técnicas de Cultura de Células/instrumentação , Cerâmica/química , Poliésteres/química , Animais , Materiais Biocompatíveis , Desenvolvimento Ósseo , Diferenciação Celular , Eletroquímica , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Ratos , Engenharia Tecidual/métodos
3.
Clin Oral Investig ; 24(2): 785-797, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31154539

RESUMO

OBJECTIVES: Evaluate the modulating effect of ionizing radiation, blood cytokine levels, and bone remodeling of the interface around the implant to understand the radiation mechanisms which can impair the implants receptor site. MATERIAL AND METHODS: Sixty rats were submitted to grade V titanium implants in the femurs and were divided into the following groups: no-irradiation (N-Ir): control group with implant only; early-irradiation (E-Ir): implant + irradiation after 24 h; late-irradiation (L-Ir): implant + irradiation after 4 weeks; and previous-irradiation (P-Ir): irradiation + implant after 4 weeks. The animals in the E-Ir, L-Ir, and P-Ir groups were irradiated in two fractional stages of 15 Gy. At 3 days, 2 weeks, and 7 weeks after the final procedure, five animals were randomly euthanized per group. Serum levels of TNF-ɑ, IL-1ß, TGF-ß, IL-6, M-CSF, and IL-10 were measured from blood collected prior to euthanasia using the ELISA test. The pieces containing the implants were subjected to immunohistochemical labeling using the tartrate acid resistant to phosphatase, osteocalcin, and caspase-3 markers and mCT. The ANOVA test was used for statistical analysis, and the Tukey multiple comparison test (p < 0.05) was applied. RESULTS: The results indicated that ionizing radiation modifies the production of pro- and anti-inflammatory serum cytokines, the expression of proteins involved in bone remodeling and cellular apoptosis, as well as changes in bone formation. CONCLUSIONS: The results suggests that a longer period between radiotherapy and implant placement surgery when irradiation occurs prior to implant installation would allow the recovery and renewal of bone cells and avoid future failures in osseointegration. CLINICAL RELEVANCE: The search for modifications caused by ionizing irradiation in bone tissue can indicate the ideal period for implant placement without affecting the osseointegration process.


Assuntos
Implantes Dentários , Animais , Fêmur , Implantes Experimentais , Osseointegração , Osteogênese , Ratos , Titânio
4.
J Mater Sci Mater Med ; 31(1): 10, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873807

RESUMO

Calcium aluminate cement (CAC) as a biomaterial has been evaluated for its physical, mechanical and biocompatibility properties. Furthermore, the application of CAC for bone repair is due to its composition and coefficient of thermal expansion, which is similar to that of human bone. Thus, the aim of this study was to evaluate compositions of CAC-based blends as substitutes for bone defects. Five compositions of blends (alumina, zirconia, hydroxyapatite, tricalcium phosphate, chitosan), in addition to the base cement consisting of homogeneous CAC were evaluated as a substitute for bone repair. Additionally, the monotypic biofilm formation was assessed. Creation of a monocortical bone defect was performed on the femurs of rats, which were randomly filled with the different materials. The polymethylmethacrylate (PMMA) group was used as a control. All the animals were euthanized 04 weeks after the surgery procedure. Subsequently, computerized microtomography, histological and histomorphometric analyses were performed to verify the bone repair. To evaluate the formation of biofilms, reference strains of Staphylococcus aureus, Streptococcus mutans and Pseudomonas aeruginosa were cultured on the samples, and the biofilm formed was quantified by the MTT method. In the microtomography and histomorphometry results, it was observed that the blends exhibited better results than the control group, with statistically significant differences (p < 0.05) for alumina and zirconia blends. In the biofilm formation, a statistical difference (p < 0.05) in general was observed between the alumina blends and the control group (p < 0.05). It was concluded that CAC-based blends with alumina and zirconia are promising for use in fillings for bone repair.


Assuntos
Compostos de Alumínio/química , Materiais Biocompatíveis , Biofilmes , Cimentos Ósseos/química , Osso e Ossos/lesões , Compostos de Cálcio/química , Animais , Teste de Materiais , Ratos , Engenharia Tecidual
5.
J Mater Sci Mater Med ; 30(7): 81, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31254104

RESUMO

Carbon nanotubes combine high bend and mechanical strength, which is advantageous for many structural and biomedical purposes. Recently, some biomaterials, based on carbon nanostructures and nanohydroxyapatite (nHAp), have been investigated as bone substitutes in order to improve regeneration. The aim of this study was to access the expression of some RNA transcripts (involved in the process of osteoblast differentiation) by mesenchymal stem cells cultured over different nanocomposite surfaces. A multi-walled carbon nanotube (MWCNT) was firstly grown using chemical vapor deposition and then exfoliated using chemical and oxygen plasma treatments to obtain graphene nanoribbons (GNR). The hybrid composites nHAp/GNR were prepared using the wet method assisted by ultrasound irradiation with different amounts of GNR (1.0, 2.0 and 3.0 wt %). Five groups were tested in cell cultures. Group 1: synthesized nHAp; Group 2: synthesized GNR; Group 3: nHAp and 1.0% of GNR; Group 4: nHAp and 2.0% of GNR and group 5: nHAp and 3.0% of GNR. Real time reverse transcription polymerase chain reactions were performed, and all data was submitted to Kruskal Wallis and Dunn tests, at a significance level of 5%. As a result, three nanocomposites with different proportions of GNR were successfully produced. After cell culture, the expression of osteogenic genes demonstrated no significant differences among the groups and periods. However, bone morphogenetic protein II (BMP II), integrin binding sialoprotein (IBSP), and Osterix highest expressions were observed in the group containing 3.0% of GNR. In conclusion, our hybrid composites may be useful in bone interventions requiring mesenchymal stem cell differentiation into osteoblasts for healing.


Assuntos
Durapatita/química , Grafite/química , Nanotubos de Carbono/química , Osteogênese , Engenharia Tecidual/métodos , Bioensaio , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Humanos , Sialoproteína de Ligação à Integrina/metabolismo , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Osteoblastos/citologia , Oxigênio/química , RNA/análise , Fator de Transcrição Sp7/metabolismo , Estresse Mecânico , Alicerces Teciduais/química
6.
J Mater Sci Mater Med ; 30(9): 108, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535222

RESUMO

Biological effects of titanium (Ti) alloys were analyzed on biofilms of Candida albicans, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguinis, as well as on osteoblast-like cells (MG63) and murine macrophages (RAW 264.7). Standard samples composed of aluminum and vanadium (Ti-6Al-4V), and sample containing niobium (Ti-35Nb) and zirconium (Ti-13Nb-13Zr) were analyzed. Monomicrobial biofilms were formed on the Ti alloys. MG63 cells were grown with the alloys and the biocompatibility (MTT), total protein (TP) level, alkaline phosphatase (ALP) activity, and mineralization nodules (MN) formation were verified. Levels of interleukins (IL-1ß and IL-17), tumor necrosis factor alpha (TNF-α), and oxide nitric (NO) were checked, from RAW 264.7 cells supernatants. Data were statically analyzed by one-way analysis of variance (ANOVA) and Tukey's test, or T-test (P ≤ 0.05). Concerning the biofilm formation, Ti-13Nb-13Zr alloy showed the best inhibitory effect on E. faecalis, P. aeruginosa, and S. aureus. And, it also acted similarly to the Ti-6Al-4V alloy on C. albicans and Streptococcus spp. Both alloys were biocompatible and similar to the Ti-6Al-4V alloy. Additionally, Ti-13Nb-13Zr alloy was more effective for cell differentiation, as observed in the assays of ALP and MN. Regarding the stimulation for release of IL-1ß and TNF-α, Ti-35Nb and Ti-13Nb-13Zr alloys inhibited similarly the synthesis of these molecules. However, both alloys stimulated the production of IL-17. Additionally, all Ti alloys showed the same effect for NO generation. Thus, Ti-13Nb-13Zr alloy was the most effective for inhibition of biofilm formation, cell differentiation, and stimulation for release of immune mediators.


Assuntos
Ligas/farmacologia , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Ligas/química , Animais , Materiais Biocompatíveis/química , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Células Cultivadas , Teste de Materiais , Camundongos , Testes de Sensibilidade Microbiana , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/fisiologia , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Streptococcus/efeitos dos fármacos , Streptococcus/fisiologia , Propriedades de Superfície , Titânio/química
7.
ScientificWorldJournal ; 2018: 2494918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057490

RESUMO

Chronic alcohol exposure can affect the osteoblastic activity and the proliferation and differentiation of cells due to its toxic effect, which can affect negatively bone repair and bone microarchitecture. The aim of this study was to evaluate the effects of chronic use of 20% alcohol on rats regarding osteoblastic differentiation, extrinsic and intrinsic properties of the tibia, and hepatic and renal morphology. Wistar rats were divided into three groups (n = 9) in accordance with a 24-week diet. After euthanasia, kidneys, liver, and tibias were removed for analysis and femurs mesenchymal cells were collected. The results showed that chronic use of 20% alcohol influenced neither the alkaline phosphatase production nor total protein (p > 0.05) in rats, with similar formation of nodules in all groups (p > 0.05). However, significant changes in the liver and kidneys and adverse effects on the mechanical properties of the tibia were observed. According to the results, it can be concluded that the chronic use of alcohol for 24 weeks had no negative influence on the activity and differentiation of osteoblasts, but the mechanical properties of the tibia were impaired and the organs responsible for metabolism and excretion were also affected due to the consumption of alcohol.


Assuntos
Álcoois/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Ratos , Ratos Wistar , Tíbia/efeitos dos fármacos , Tíbia/metabolismo
8.
Lasers Med Sci ; 31(5): 899-905, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056701

RESUMO

The present study aimed to assess the effects of low-level laser therapy (GaAlAs) on the bone repair process within titanium scaffolds in the femurs of healthy and osteoporotic rats. Fifty-six rats were divided into four groups: group Sh: SHAM animals that received scaffolds; group LSh: SHAM animals that received scaffolds and were subjected to laser therapy; group OV: ovarietomized (OVX) animals that received scaffolds; and group LOV: OVX animals that received scaffolds and were subjected to laser therapy. Thirty days following ovariectomy or sham surgery, scaffolds were implanted in the left femurs of all animals in the study. Immediately after opening the surgical site, the inner part of the surgical cavity was stimulated with low-level laser (GaAlAs). In addition to this procedure, the laser group was also subjected to sessions of low-level laser therapy (LLLT) at 48-h intervals, with the first session performed immediately after surgery. The rats were sacrificed at 2 and 6 weeks, time in which femur fragments were submitted for histological and histomorphometric examination, and skin tissue above the scaffold was submitted to histological analysis. At the end of the study, greater bone formation was observed in the animals submitted to LLLT. At 2 and 6 weeks, statistically significant differences were observed between LSh and Sh groups (p = 0.009 and 0.0001) and LOV and OV (p = 0.0001 and 0.0001), respectively. No statistical difference was observed when assessing the estrogen variable. On the basis of our methodology and results, we conclude that LLLT improves and accelerates bone repair within titanium scaffolds in both ovariectomized and healthy rats, when compared to animals not subjected to radiation.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Osteogênese/efeitos da radiação , Alicerces Teciduais/química , Titânio/química , Cicatrização/efeitos da radiação , Animais , Feminino , Fêmur , Ovariectomia , Distribuição Aleatória , Ratos , Ratos Wistar
9.
J Mater Sci Mater Med ; 26(11): 259, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26449449

RESUMO

Tests on titanium alloys that possess low elastic modulus, corrosion resistance and minimal potential toxicity are ongoing. This study aimed to evaluate the behavior of human osteoblastic cells cultured on dense and porous Titanium (Ti) samples comparing to dense and porous Ti-35 Niobium (Ti-35Nb) samples, using gene expression analysis. Scanning electronic microscopy confirmed surface porosity and pore interconnectivity and X-ray diffraction showed titanium beta-phase stabilization in Ti-35Nb alloy. There were no differences in expression of transforming growth factor-ß, integrin-ß1, alkaline phosphatase, osteopontin, macrophage colony stimulating factor, prostaglandin E synthase, and apolipoprotein E regarding the type of alloy, porosity and experimental period. The experimental period was a significant factor for the markers: bone sialoprotein II and interleukin 6, with expression increasing over time. Porosity diminished Runt-related transcription factor-2 (Runx-2) expression. Cells adhering to the Ti-35Nb alloy showed statistically similar expression to those adhering to commercially pure Ti grade II, for all the markers tested. In conclusion, the molecular mechanisms of interaction between human osteoblasts and the Ti-35Nb alloy follow the principal routes of osseointegration of commercially pure Ti grade II. Porosity impaired the route of transcription factor Runx-2.


Assuntos
Ligas , Processo Alveolar/metabolismo , Expressão Gênica , Nióbio , Osteoblastos/metabolismo , Titânio , Adulto , Processo Alveolar/citologia , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Porosidade , Reação em Cadeia da Polimerase em Tempo Real , Alicerces Teciduais , Difração de Raios X
10.
Aging Clin Exp Res ; 26(5): 465-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25155284

RESUMO

BACKGROUND AND AIMS: Estrogen deficiency results in increased bone turnover and can lead to osteoporosis. Hormone replacement therapy (HRT) seems to be the most effective means of reducing bone loss and fractures. However, the effects of the period of HRT onset on bone tissue require further elucidation. This study aimed to evaluate the effects of different periods of HRT onset on the trabecular bone of ovariectomized rats. METHODS: Seventy-five ovariectomized Wistar rats were divided into five groups according to the onset of treatment. Each group was subdivided into experimental (E; n = 10) and control (C; n = 5), according to treatment with 17-ß-estradiol or vehicle alone (soybean oil), respectively, administered subcutaneously. The first group received treatment immediately post-surgery, while treatment in the remaining groups was initiated 1, 2, 3 and 4 weeks post-surgery. Euthanasia occurred at 9 weeks post-surgery. The left tibias were removed and prepared for histomorphometric analyses. The histomorphometric results were statistically analyzed by the Student's t test (p < 0.05). RESULTS: The percentage of trabecular bone was significantly greater in the first (p = 0.002) and second (p = 0.039) experimental subgroups compared with the control for the same period. In the experimental subgroups, the percentage of trabecular bone decreased according to the delay in HRT onset and was statistically significant (t = 3.367; p = 0.0023). CONCLUSION: These findings indicate an increase in trabecular bone loss in tibia at 9 weeks post-ovariectomy. The period of HRT/E onset is important for preventing bone loss; however, despite its preventive effects, HRT/E does not restore lost bone.


Assuntos
Terapia de Reposição de Estrogênios/métodos , Tíbia/efeitos dos fármacos , Animais , Índice de Massa Corporal , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/patologia , Modelos Animais de Doenças , Estradiol/administração & dosagem , Feminino , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ovariectomia , Ratos , Ratos Wistar , Fatores de Tempo , Resultado do Tratamento
11.
Lasers Med Sci ; 29(2): 575-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23624654

RESUMO

The study investigates the influence of low-level laser therapy (LLLT) on bone healing in the femur of osteopenic and normal rats with titanium implants. Ovariectomy and control group were randomly submitted to LLLT, which was applied by gallium-aluminum-arsenium (GaAlAs) laser at the surgical site before and after placing the implant, for seven times. Histomorphometric and statistical analysis were performed. Most irradiated groups showed higher values than the nonirradiated groups. The GaAlAs infrared diode laser may improve the osseointegration process in osteopenic and normal bone, particularly based on its effects in the initial phase of bone formation.


Assuntos
Doenças Ósseas Metabólicas/fisiopatologia , Doenças Ósseas Metabólicas/radioterapia , Fêmur/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Osteogênese/efeitos da radiação , Titânio , Animais , Substitutos Ósseos , Feminino , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade/instrumentação , Osseointegração , Ovariectomia , Ratos , Cicatrização/efeitos da radiação
12.
J Cancer Res Clin Oncol ; 150(8): 390, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154308

RESUMO

OBJECTIVES: Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS: Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS: In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION: Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.


Assuntos
Apoptose , Artemisininas , Movimento Celular , Cisplatino , Progressão da Doença , Leucoplasia Oral , Neoplasias Bucais , Artemisininas/farmacologia , Animais , Leucoplasia Oral/patologia , Leucoplasia Oral/tratamento farmacológico , Humanos , Cisplatino/farmacologia , Camundongos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proteína HMGB1/metabolismo , Antineoplásicos/farmacologia
13.
J Biomed Mater Res B Appl Biomater ; 112(1): e35315, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589245

RESUMO

The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol-gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol-gel method with nitrate (N) and chloride (CL) as precursors. PCL and bioceramic solutions were electrospun to obtain ultrafine fiber mats. Raman spectroscopy, x-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the materials. The results showed that both chlorinated and non-chlorinated bioceramics contained NBOs (non-bridge bonds) and crystallized the α-wollastonite phase, with the chlorinated version doing so at lower temperatures. In vitro tests were performed to evaluate cytotoxicity, cell adhesion, and mineralized matrix formation on the membranes. The composite membranes showed improved cell viability and promoted mineralization nodules formation. This study presents a promising approach for the development of bioactive membranes for bone tissue engineering, with potential applications in bone regeneration therapies.


Assuntos
Poliésteres , Engenharia Tecidual , Poliésteres/química , Engenharia Tecidual/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Osso e Ossos , Alicerces Teciduais/química , Materiais Biocompatíveis/química
14.
J Biomed Mater Res B Appl Biomater ; 112(2): e35380, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38348496

RESUMO

Zirconia implants are gaining attention as a viable alternative to titanium implants due to their comparable osseointegration development, improved soft tissue adaptation, and enhanced aesthetics. An encouraging avenue for improving zirconia implant properties involves the potential application of bioactive coatings to their surfaces. These coatings have shown potential for inducing hydroxyapatite formation, crucial for bone proliferation, and improving implant mechanical properties. This study aimed to evaluate the effect of coating zirconia implants with two bioactive glasses, 45S5 and BioK, on osteogenesis in vitro and osseointegration in vivo. Zirconia samples and implants were prepared using Zpex zirconia powder and blocks, respectively. The samples were divided into three groups: polished zirconia (ZRC), zirconia coated with 45S5 bioglass (Z + 45S5), and zirconia coated with BioK glass (Z + BK). Coatings were applied using a brush and sintered at 1200°C. Chemical analysis of the coatings was carried out using x-ray diffraction and Fourier Transform Infrared Spectroscopy. Surface topography and roughness were characterized using scanning electron microscopy and a roughness meter. In vitro experiments used mesenchymal cells from Wistar rat femurs, and the coated zirconia implants were found to promote cell viability, protein synthesis, alkaline phosphatase activity, and mineralization, indicating enhanced osteogenesis. In vivo experiments with 18 rats showed positive results for bone formation and osseointegration through histological and histomorphometric analysis and a push-out test. The findings indicate that bioactive glass coatings have the potential to improve cell differentiation, bone formation, and osseointegration in zirconia implants.


Assuntos
Cerâmica , Implantes Dentários , Próteses e Implantes , Zircônio , Ratos , Animais , Ratos Wistar , Osseointegração , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Microscopia Eletrônica de Varredura
15.
J Biomater Sci Polym Ed ; 35(10): 1493-1510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569077

RESUMO

In recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable polymeric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels. The synthesis involved a thermally induced phase separation process followed by lyophilization to ensure an appropriate porous structure. BG-58S characterization revealed vitreous, bioactive, and mesoporous structural properties. The scaffolds were analyzed for morphology, interconnectivity, chemical groups, porosity and pore size distribution, zeta potential, pH, in vitro degradation, as well as cell viability tests, total protein content and mineralization nodule production. The PDLLA scaffold displayed a homogeneous morphology with interconnected macropores, while the hybrid scaffold exhibited a heterogeneous morphology with smaller diameter pores due to BG-58S filling. The hybrid scaffold also demonstrated a pH buffering effect on the polymer surface. In addition to structural characteristics, degradation tests indicated that by incorporating BG-58S modified the acidic degradation of the polymer, allowing for increased total protein production and the formation of mineralization nodules, indicating a positive influence on cell culture.


Assuntos
Regeneração Óssea , Cerâmica , Vidro , Poliésteres , Alicerces Teciduais , Cerâmica/química , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Vidro/química , Porosidade , Poliésteres/química , Materiais Biocompatíveis/química , Concentração de Íons de Hidrogênio , Humanos , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais
16.
J Biomed Mater Res B Appl Biomater ; 112(9): e35467, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39180195

RESUMO

The objective of the present study was to evaluate the carbon fiber obtained from textile PAN fiber, in its different forms, as a potential scaffolds synthetic bone. Thirty-four adult rats were used (Rattus norvegicus, albinus variation), two critical sized bone defects were made that were 5 mm in diameter. Twenty-four animals were randomly divided into four groups: control (C)-bone defect + blood clot, non-activated carbon fiber felt (NACFF)-bone defect + NACFF, activated carbon fiber felt (ACFF)-bone defect + ACFF, and silver activated carbon fiber felt (Ag-ACFF)-bone defect + Ag-ACFF, and was observed by 15 and 60 days for histomorphometric, three-dimensional computerized microtomography (microCT) and mineral apposition analysis. On histomorphometric and microCT analyses, NACFF were associated with higher proportion of neoformed bone and maintenance of bone structure. On fluorochrome bone label, there was no differences between the groups. NACFF has shown to be a promising synthetic material as a scaffold for bone regeneration.


Assuntos
Regeneração Óssea , Fibra de Carbono , Carbono , Alicerces Teciduais , Microtomografia por Raio-X , Animais , Ratos , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Carbono/química , Fibra de Carbono/química , Masculino , Têxteis , Brasil , Teste de Materiais , Ratos Wistar
17.
J Craniofac Surg ; 24(6): e546-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24220463

RESUMO

The current study used strain gauge analysis to perform an in vitro evaluation of the effect of axial and non-axial loading on implant-supported fixed partial prostheses, varying the implant placement configurations and the loading points. Three internal hexagon implants were embedded in the center of each polyurethane block with in-line and offset placements. Microunit abutments were connected to the implants using a torque of 20 N · cm, and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 10). Four strain gauges (SGs) were bonded onto the surfaces of the blocks, tangentially to the implants: SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments using a 10-N·cm torque, and axial and non-axial loads of 30 kg were applied at 5 predetermined points. The data obtained from the strain gauge analyses were analyzed statistically through the repeated measures analysis of variance and the Tukey test, with a conventional level of significance of P < 0.05. The results showed a statistically significant difference for the loading point (P = 0.0001), with point E (nonaxial) generating the highest microstrain (327.67 µ[Latin Small Letter Open E]) and point A (axial) generating the smallest microstrain (208.93 µ[Latin Small Letter Open E]). No statistically significant difference was found for implant placement configuration (P = 0.856). It was concluded that the offset implant placement did not reduce the magnitude of microstrain around the implants under axial and non-axial loading conditions, although loading location did influence this magnitude.


Assuntos
Implantes Dentários , Prótese Dentária Fixada por Implante , Prótese Parcial Fixa , Fenômenos Biomecânicos , Dente Suporte , Ligas Dentárias/química , Planejamento de Prótese Dentária , Análise do Estresse Dentário/métodos , Planejamento de Dentadura , Retenção de Dentadura/instrumentação , Humanos , Teste de Materiais , Estresse Mecânico , Torque
18.
J Biomed Mater Res B Appl Biomater ; 111(11): 1956-1965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37482895

RESUMO

This study aimed to evaluate the Carbon Fiber obtained from PAN textile and cotton fiber in their different forms of presentation: non-activated carbon fiber felt (NACFF), activated carbon fiber felt (ACFF), silver activated carbon fiber felt (Ag-ACFF), and activated carbon fiber tissue (ACFT), to obtain scaffolds as a potential material with properties related to the synthetic bone graft. Characterization tests performed: surface wettability, traction, swelling, and in vivo tests: evaluation of the inflammatory response by implanting the materials in the subcutaneous tissue of 14 Wistar rats, evaluation of collagen fibers by picrosirius red staining and assessment of toxicity in the following organs: heart, spleen, liver, and kidney. In the wettability test, NACFF and ACFT were hydrophobic (θ124° and 114°), ACFF and Ag-ACFF were hydrophilic. For maximum stress, ACFF was more resistant (2.983 ± 1.059) p < .05. In the swelling test, the Ag-ACFF and ACFF groups showed the highest absorption percentage for the PBS solution and distilled water (p < .001). The organs showed no signs of acute systemic toxicity. The implant regions showed mild to moderate inflammatory infiltrate at 7 and 21 days. Only the ACFT group did not show the maturation of type I collagen fibers in 21 days. Through the conducted analyses, the ACFT shows little potential to be indicated as a possible scaffold. Therefore NACFF, ACFF, and Ag-ACFF have the potential to be considered scaffolds due to the following characteristics presented: good absorption rate, hydrophilicity, and non-toxic.

19.
J Funct Biomater ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826892

RESUMO

With the increase in the population's life expectancy, there has also been an increase in the rate of osteoporosis, which has expanded the search for strategies to regenerate bone tissue. The ultrasonic sonochemical technique was chosen for the functionalization of the 45S5 bioglass. The samples after the sonochemical process were divided into (a) functionalized bioglass (BG) and (b) functionalized bioglass with 10% teriparatide (BGT). Isolated mesenchymal cells (hMSC) from femurs of ovariectomized rats were differentiated into osteoblasts and submitted to in vitro tests. Bilateral ovariectomy (OVX) and sham ovariectomy (Sham) surgeries were performed in fifty-five female Wistar rats. After a period of 60 days, critical bone defects of 5.0 mm were created in the calvaria of these animals. For biomechanical evaluation, critical bone defects of 3.0 mm were performed in the tibias of some of these rats. The groups were divided into the clot (control) group, the BG group, and the BGT group. After the sonochemical process, the samples showed modified chemical topographic and morphological characteristics, indicating that the surface was chemically altered by the functionalization of the particles. The cell environment was conducive to cell adhesion and differentiation, and the BG and BGT groups did not show cytotoxicity. In addition, the experimental groups exhibited characteristics of new bone formation with the presence of bone tissue in both periods, with the BGT group and the OVX group statistically differing from the other groups (p < 0.05) in both periods. Local treatment with the drug teriparatide in ovariectomized animals promoted positive effects on bone tissue, and longitudinal studies should be carried out to provide additional information on the biological performance of the mutual action between the bioglass and the release of the drug teriparatide.

20.
J Biomed Mater Res B Appl Biomater ; 111(1): 140-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852036

RESUMO

The objective was to synthesize and characterize fine polycaprolactone (PCL) fibers associated with a new 58S bioglass obtained by the precipitated sol-gel route, produced by the electrospinning process in order to incorporate therapeutic ions (Mg and Li). In PCL/acetone solutions were added 7% pure bioglass, bioglass doped with Mg(NO3 )2 and Li2 CO3 and were subjected to electrospinning process. The fibers obtained were characterized morphologically, chemically and biologically. The results showed the presence of fine fibers at the nanometric scale and with diameters ranging from 0.67 to 1.92 µm among groups. Groups containing bioglass showed particles both inside and on the surface of the fibers. The components of the polymer, bioglass and therapeutic ions were present in the fibers produced. The produced fibers showed cell viability and induced the formation of mineralization nodules. It was observed the applicability of that methodology in making an improved biomaterial, which adds the osteoinductive properties of the bioglass to PCL and to those of therapeutic ions, applicable to guided bone regeneration.


Assuntos
Poliésteres , Alicerces Teciduais , Alicerces Teciduais/química , Poliésteres/química , Cerâmica/química , Materiais Biocompatíveis/química , Íons , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA