Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 613(7942): 77-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600068

RESUMO

Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30-70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10-30% and 10-80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.


Assuntos
Produção Agrícola , Produtos Agrícolas , Poluição Ambiental , Nitrogênio , Solo , Humanos , Análise Custo-Benefício , Ecossistema , Fertilizantes/análise , Nitrogênio/análise , Solo/química , Poluição Ambiental/economia , Poluição Ambiental/prevenção & controle , Produção Agrícola/economia , Produção Agrícola/métodos , Produção Agrícola/tendências
2.
Nature ; 619(7968): 102-111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258676

RESUMO

The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.


Assuntos
Mudança Climática , Planeta Terra , Justiça Ambiental , Internacionalidade , Segurança , Humanos , Aerossóis/metabolismo , Clima , Água/metabolismo , Nutrientes/metabolismo , Segurança/legislação & jurisprudência , Segurança/normas
4.
Nature ; 562(7728): 519-525, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305731

RESUMO

The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50-90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.


Assuntos
Agricultura/métodos , Agricultura/tendências , Meio Ambiente , Abastecimento de Alimentos , Desenvolvimento Sustentável , Mudança Climática , Produtos Agrícolas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Incerteza
5.
J Environ Manage ; 345: 118531, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423193

RESUMO

Soil amendments, including lime, biochar, industrial by-products, manure, and straw are used to alleviate soil acidification and improve crop productivity. Quantitative insight in the effect of these amendments on soil pH is limited, hampering their appropriate use. Until now, there is no comprehensive evaluation of the effects of soil amendments on soil acidity and yield, accounting for differences in soil properties. We synthesized 832 observations from 142 papers to explore the impact of these amendments on crop yield, soil pH and soil properties, focusing on acidic soils with a pH value below 6.5. Application of lime, biochar, by-products, manure, straw and combinations of them significantly increased soil pH by 15%, 12%, 15%, 13%, 5% and 17%, and increased crop yield by 29%, 57%, 50%, 55%, 9%, and 52%, respectively. The increase of soil pH was positively correlated with the increase in crop yield, but the relationship varied among crop types. The most substantial increases in soil pH and yield in response to soil amendments were found under long-term applications (>6 year) in strongly acidic (pH < 5.0) sandy soils with a low cation exchange capacity (CEC, <100 mmolc kg-1) and low soil organic matter content (SOM, <12 g kg-1). Most amendments increased soil CEC, SOM and base saturation (BS) and decreased soil bulk density (BD), but lime application increased soil BD (1%) induced by soil compaction. Soil pH and yield were positively correlated with CEC, SOM and BS, while yield declined when soils became compacted. Considering the impact of the amendments on soil pH, soil properties and crop yield as well as their costs, the addition of lime, manure and straw seem most appropriate in acidic soils with an initial pH range from <5.0, 5.0-6.0 and 6.0-6.5, respectively.


Assuntos
Poluentes do Solo , Solo , Solo/química , Esterco , Compostos de Cálcio/química , Carvão Vegetal/química , Ácidos , Poluentes do Solo/química
6.
Ecol Lett ; 25(1): 77-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34694058

RESUMO

Nitrogen (N) deposition is known to increase carbon (C) sequestration in N-limited boreal forests. However, the long-term effects of N deposition on ecosystem carbon fluxes have been rarely investigated in old-growth boreal forests. Here we show that decade-long experimental N additions significantly stimulated net primary production (NPP) but the effect decreased with increasing N loads. The effect on soil heterotrophic respiration (Rh) shifted from a stimulation at low-level N additions to an inhibition at higher levels of N additions. Consequently, low-level N additions resulted in a neutral effect on net ecosystem productivity (NEP), due to a comparable stimulating effect on NPP and Rh, while NEP was increased by high-level N additions. Moreover, we found nonlinear temporal responses of NPP, Rh and NEP to low-level N additions. Our findings imply that actual N deposition in boreal forests likely exerts a minor contribution to their soil C storage.


Assuntos
Ecossistema , Nitrogênio , Carbono , Florestas , Nitrogênio/análise , Solo , Taiga
7.
Glob Chang Biol ; 28(3): 899-917, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34699094

RESUMO

Human activities have drastically increased nitrogen (N) deposition onto forests globally. This may have alleviated N limitation and thus stimulated productivity and carbon (C) sequestration in aboveground woody biomass (AGWB), a stable C pool with long turnover times. This 'carbon bonus' of human N use partly offsets the climate impact of human-induced N2 O emissions, but its magnitude and spatial variation are uncertain. Here we used a meta-regression approach to identify sources of heterogeneity in tree biomass C-N response (additional C stored per unit of N) based on data from fertilization experiments in global forests. We identified important drivers of spatial variation in forest biomass C-N response related to climate (potential evapotranspiration), soil fertility (N content) and tree characteristics (stand age), and used these relationships to quantify global spatial variation in N-induced forest biomass C sequestration. Results show that N deposition enhances biomass C sequestration in only one-third of global forests, mainly in the boreal region, while N reduces C sequestration in 5% of forests, mainly in the tropics. In the remaining 59% of global forests, N addition has no impact on biomass C sequestration. Average C-N responses were 11 (4-21) kg C per kg N for boreal forests, 4 (0-8) kg C per kg N for temperate forests and 0 (-4 to 5) kg C per kg N for tropical forests. Our global estimate of the N-induced forest biomass C sink of 41 (-53 to 159) Tg C yr-1 is substantially lower than previous estimates, mainly due to the absence of any response in most tropical forests (accounting for 58% of the global forest area). Overall, the N-induced C sink in AGWB only offsets ~5% of the climate impact of N2 O emissions (in terms of 100-year global warming potential), and contributes ~1% to the gross forest C sink.


Assuntos
Sequestro de Carbono , Nitrogênio , Biomassa , Carbono , Florestas , Humanos , Taiga , Árvores
8.
Glob Chang Biol ; 28(3): 1162-1177, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726814

RESUMO

Widespread adoption of improved cropland management measures is advocated to increase soil organic carbon (SOC) levels, thereby improving soil fertility and mitigating climate change. However, spatially explicit insight on management impacts is limited, which is crucial for region-specific and climate-smart practices. To overcome these limitations, we combined global meta-analytical results on improved management practices on SOC sequestration with spatially explicit data on current management practices and potential areas for the adoption of these measures. We included (a) fertilization practices, i.e., use of organic fertilizer compared to inorganic fertilizer or no fertilizer, (b) soil tillage practices, i.e., no-tillage relative to high or intermediate intensity tillage, and (c) crop management practices, i.e., use of cover crops and enhanced crop residue incorporation. We show that the estimated global C sequestration potential varies between 0.44 and 0.68 Gt C yr-1 , assuming maximum complementarity among all measures taken. A more realistic estimate, not assuming maximum complementarity, is from 0.28 to 0.43 Gt C yr-1 , being on the lower end of the current range of 0.1-2 Gt C yr-1 found in the literature. One reason for the lower estimate is the limited availability of manure that has not yet been recycled. Another reason is the limited area for the adoption of improved measures, considering their current application and application limitations. We found large regional differences in carbon sequestration potential due to differences in yield gaps, SOC levels, and current practices applied. The highest potential is found in regions with low crop production, low initial SOC levels, and in regions where livestock manure and crop residues are only partially recycled. Supporting previous findings, we highlight that to encourage both soil fertility and SOC sequestration, it is best to focus on agricultural soils with large yield gaps and/or where SOC values are below levels that may limit crop production.


Assuntos
Sequestro de Carbono , Solo , Agricultura/métodos , Carbono/metabolismo , Produtos Agrícolas/metabolismo , Fertilizantes/análise , Solo/química
9.
Glob Environ Change ; 61: 102029, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32601516

RESUMO

Humanity's transformation of the nitrogen cycle has major consequences for ecosystems, climate and human health, making it one of the key environmental issues of our time. Understanding how trends could evolve over the course of the 21st century is crucial for scientists and decision-makers from local to global scales. Scenario analysis is the primary tool for doing so, and has been applied across all major environmental issues, including nitrogen pollution. However, to date most scenario efforts addressing nitrogen flows have either taken a narrow approach, focusing on a singular impact or sector, or have not been integrated within a broader scenario framework - a missed opportunity given the multiple environmental and socio-economic impacts that nitrogen pollution exacerbates. Capitalizing on our expanding knowledge of nitrogen flows, this study introduces a framework for new nitrogen-focused narratives based on the widely used Shared Socioeconomic Pathways that include all the major nitrogen-polluting sectors (agriculture, industry, transport and wastewater). These new narratives are the first to integrate the influence of climate and other environmental pollution control policies, while also incorporating explicit nitrogen-control measures. The next step is for them to be used as model inputs to evaluate the impact of different nitrogen production, consumption and loss trajectories, and thus advance understanding of how to address environmental impacts while simultaneously meeting key development goals. This effort is an important step in assessing how humanity can return to the planetary boundary of this essential element over the coming century.

10.
J Environ Manage ; 270: 110888, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721326

RESUMO

Nitrogen (N) fertilizer-induced soil acidification in Chinese croplands is well-known, but insight in the impacts of different N fertilizer management approaches (fertilizer type and rate) on soil acidification rates is very limited. Here, we conducted a field experiment on a moderate acid soil to quantify soil acidification rates in response to N fertilization by different fertilizer types and N rates through monitoring the fate of elements (mainly nutrients) related to H+ production and consumption. Two N fertilizer types (urea and NH4Cl) and three N rates (control, optimized and conventional, 0/120/240 kg N ha-1 for wheat, 0/160/320 kg N ha-1 for maize) were included. Nitrogen addition led to an average H+ production of 4.0, 8.7, 11.4, 29.7 and 52.6 keq ha-1 yr-1, respectively, for the control, optimized urea, conventional urea, optimized NH4Cl and conventional NH4Cl plots. This was accompanied with a decline in soil base saturation of 1-10% and in soil pH of 0.1-0.7 units in the topsoil (0-20 cm). Removal of base cations by crop harvesting and N transformations contributed ~70% and ~20% to the H+ production in the urea treated plots, being ~20% and ~75% in the NH4Cl treated plots, respectively. The large NH4+ input via fertilization in the NH4Cl treated plots strongly enhanced the H+ production induced by N transformations. The low contribution of N transformations to the H+ production in the urea treated plots was due to the limited NO3- leaching, induced by the high N losses to air caused by denitrification. Increased N addition by urea, however, strongly increased H+ production by enhanced plant uptake of base cations, mainly due to a large potassium uptake in straw. Our results highlight the important role of optimizing fertilizer form and N rate as well as straw return to the field in alleviating soil acidification.


Assuntos
Fertilizantes , Triticum , Agricultura , China , Concentração de Íons de Hidrogênio , Nitrogênio , Solo , Zea mays
11.
Glob Chang Biol ; 24(2): e416-e431, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29034987

RESUMO

Elevated nitrogen (N) deposition may increase net primary productivity in N-limited terrestrial ecosystems and thus enhance the terrestrial carbon (C) sink. To assess the magnitude of this N-induced C sink, we performed a meta-analysis on data from forest fertilization experiments to estimate N-induced C sequestration in aboveground tree woody biomass, a stable C pool with long turnover times. Our results show that boreal and temperate forests responded strongly to N addition and sequestered on average an additional 14 and 13 kg C per kg N in aboveground woody biomass, respectively. Tropical forests, however, did not respond significantly to N addition. The common hypothesis that tropical forests do not respond to N because they are phosphorus-limited could not be confirmed, as we found no significant response to phosphorus addition in tropical forests. Across climate zones, we found that young forests responded more strongly to N addition, which is important as many previous meta-analyses of N addition experiments rely heavily on data from experiments on seedlings and young trees. Furthermore, the C-N response (defined as additional mass unit of C sequestered per additional mass unit of N addition) was affected by forest productivity, experimental N addition rate, and rate of ambient N deposition. The estimated C-N responses from our meta-analysis were generally lower that those derived with stoichiometric scaling, dynamic global vegetation models, and forest growth inventories along N deposition gradients. We estimated N-induced global C sequestration in tree aboveground woody biomass by multiplying the C-N responses obtained from the meta-analysis with N deposition estimates per biome. We thus derived an N-induced global C sink of about 177 (112-243) Tg C/year in aboveground and belowground woody biomass, which would account for about 12% of the forest biomass C sink (1,400 Tg C/year).


Assuntos
Sequestro de Carbono , Florestas , Nitrogênio/metabolismo , Taiga , Clima Tropical , Biomassa , Carbono , Nitrogênio/química , Árvores/crescimento & desenvolvimento
12.
Environ Sci Technol ; 51(7): 3843-3851, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28264162

RESUMO

Agricultural soil acidification in China is known to be caused by the over-application of nitrogen (N) fertilizers, but the long-term impacts of different fertilization practices on intensive cropland soil acidification are largely unknown. Here, we further developed the soil acidification model VSD+ for intensive agricultural systems and validated it against observed data from three long-term fertilization experiments in China. The model simulated well the changes in soil pH and base saturation over the last 20 years. The validated model was adopted to quantify the contribution of N and base cation (BC) fluxes to soil acidification. The net NO3- leaching and NO4+input accounted for 80% of the proton production under N application, whereas one-third of acid was produced by BC uptake when N was not applied. The simulated long-term (1990-2050) effects of different fertilizations on soil acidification showed that balanced N application combined with manure application avoids reduction of both soil pH and base saturation, while application of calcium nitrate and liming increases these two soil properties. Reducing NH4+ input and NO3- leaching by optimizing N management and increasing BC inputs by manure application thus already seem to be effective approaches to mitigating soil acidification in intensive cropland systems.


Assuntos
Produtos Agrícolas , Solo/química , Agricultura , China , Fertilizantes , Nitrogênio , Tempo
14.
Nature ; 451(7180): E1-3; discussion E3-4, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18272968

RESUMO

Magnani et al. present a very strong correlation between mean lifetime net ecosystem production (NEP, defined as the net rate of carbon (C) accumulation in ecosystems) and wet nitrogen (N) deposition. For their data in the range 4.9-9.8 kg N ha(-1) yr(-1), on which the correlation largely depends, the response is approximately 725 kg C per kg N in wet deposition. According to the authors, the maximum N wet deposition level of 9.8 kg N ha(-1) yr(-1) is equivalent to a total deposition of 15 kg N ha(-1 )yr(-1), implying a net sequestration near 470 kg C per kg N of total deposition. We question the ecological plausibility of the relationship and show, from a multi-factor analysis of European forest measurements, how interactions with site productivity and environment imply a much smaller NEP response to N deposition.


Assuntos
Carbono/metabolismo , Ecossistema , Ecologia , Europa (Continente) , Nitrogênio/metabolismo , Árvores/metabolismo
15.
Sci Total Environ ; 916: 170189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246368

RESUMO

Elevated nitrogen (N) fertilization has largely increased crop production in China, but also increased acidification risks, thereby threatening crop yields. However, natural soil acidification due to bicarbonate (HCO3) leaching and base cation (BC) removal by crop harvest also affect soil acidity whereas the input of HCO3 and BC via fertilizers and manure counteract soil acidification. Insights in rates and drivers of soil acidification in different land use types is too limited to support crop- and site-specific mitigation strategies. In this study, we assessed the historical changes in cropland acidification rates and their drivers for the period 1985-2019 at 151 sites in a typical Chinese county with the combined nutrient and soil acidification model VSD+. VSD+ could well reproduce long-term changes in pH and in the BC concentrations of calcium, magnesium and potassium between 1985 and 2019 in non-calcareous soils. In paddy soils, the acidity production rate decreased from 1985 onwards, mainly driven by a pH-induced reduction in HCO3 leaching and N transformations. In upland soils, however, acidity production was mainly driven by N transformations and hardly changed over time. Crop BC removal by harvesting played a minor role in both paddy and upland soils, but its relative importance increased in paddy soils. The acidity input was partly neutralized by HCO3 input from fertilizers and manure, which decreased over time due to a change from ammonia bicarbonate to urea. Soil buffering by both BC and aluminium release decreased in paddy soils due to a reduction in net acidity production, while it stayed relatively constant in upland soils. We conclude that acidification management in paddy soils requires a focus on avoiding high HCO3 leaching whereas the management in upland soils should focus on balancing N with recycling organic manure and crop residues.

16.
Sci Total Environ ; 934: 172986, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729375

RESUMO

Excessive application of mineral fertilizers has accelerated soil acidification in China, affecting crop production when the pH drops below a critical value. However, the contributions of natural soil acidification, induced by leaching of bicarbonate, and anthropogenic causes of soil acidification, induced by nitrogen (N) transformations and removal of base cations over acid anions, are not well quantified. In this study, we quantified soil acidification rates, in equivalents (eq) of acidity, by assessing the inputs and outputs of all major cations and anions, including calcium, magnesium, potassium, sodium, ammonium, nitrate, bicarbonate, sulphate, phosphate and chloride, for 13 long-term experimental sites in southern China. The acidification rates strongly varied among fertilizer treatments and with the addition of animal manure. Bicarbonate leaching was the dominant acid production process in calcareous soils (23 keq ha-1 yr-1) and in non-calcareous paddy soils (9.6 keq ha-1 yr-1), accounting for 80 % and 68 % of the total acid production rate, respectively. The calcareous soils were strongly buffered, and acidification led no or a limited decline in pH. In contrast, N transformations were the most important driver for soil acidification at one site with upland crops on a non-calcareous soil, accounting for 72 % of total acid production rate of 8.4 keq ha-1 yr-1. In this soil, the soil pH considerably decreased being accompanied by a substantial decline in exchangeable base cation. Reducing the N surplus decreased the acidification rate with 10 to 54 eq per kg N surplus with the lowest value occurring in paddy soils and the highest in the upland soil. The use of manure, containing base cations, partly mitigated the acidifying impact of N fertilizer inputs and crop removal, but enhanced phosphorus (P) accumulation. Combining mineral fertilizer, manure and lime in integrative management strategies can mitigate soil acidification and minimize N and P losses.

17.
Nat Commun ; 15(1): 401, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195574

RESUMO

Halving nitrogen pollution is crucial for achieving Sustainable Development Goals (SDGs). However, how to reduce nitrogen pollution from multiple sources remains challenging. Here we show that reactive nitrogen (Nr) pollution could be roughly halved by managed urban development in China by 2050, with NH3, NOx and N2O atmospheric emissions declining by 44%, 30% and 33%, respectively, and Nr to water bodies by 53%. While rural-urban migration increases point-source nitrogen emissions in metropolitan areas, it promotes large-scale farming, reducing rural sewage and agricultural non-point-source pollution, potentially improving national air and water quality. An investment of approximately US$ 61 billion in waste treatment, land consolidation, and livestock relocation yields an overall benefit of US$ 245 billion. This underscores the feasibility and cost-effectiveness of halving Nr pollution through urbanization, contributing significantly to SDG1 (No poverty), SDG2 (Zero hunger), SDG6 (Clean water), SDG12 (Responsible consumption and production), SDG14 (Climate Action), and so on.

18.
Environ Manage ; 51(3): 709-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23124553

RESUMO

National-scale inventories of soil organic carbon (SOC) and forest floor carbon (FFC) stocks have a high uncertainty. Inventories are often based on the interpolation of sampled information, often using a number of covariables to help such interpolation. The rationale for the choice of these covariables is not always documented, despite the fact that many local-scale studies have identified the factors explaining spatial variability of SOC and FFC stocks. These studies indicate, among others the importance of long-term land use history. Despite this, information on the effects of land use history has never been used to explain variability of carbon stocks in national-scale inventories. We designed an alternative method to improve national-scale inventories of SOC and FCC for the Dutch sand area that takes stock of the findings of detailed case studies. Determinants for SOC and FFC stocks derived from landscape-scale case studies were used to map national-scale spatial variability and to calculate national totals. The resulting national-scale spatial distribution was compared with the SOC stock map from the current Dutch greenhouse gas inventory. Using land use history to explain SOC variability decreased the error of the SOC stock estimate in 60 % of the area. The error in FFC stocks decreased in half of the forest area after including soil fertility, tree species, and forest age as explanatory factors. Estimates with reduced uncertainty will make land use and land management a more attractive and acceptable mitigation option to reduce emissions of greenhouse gases for the LULUCF sector.


Assuntos
Carbono/análise , Conservação dos Recursos Naturais , Solo/química , Árvores , Efeito Estufa/prevenção & controle , Países Baixos , Incerteza
19.
Sci Total Environ ; 857(Pt 1): 159220, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36209876

RESUMO

To gain insight in the environmental impacts of crop, soil and nutrient management, an integrated model framework INITIATOR was developed predicting: (i) emissions of ammonia (NH3) and greenhouse gases (GHG) from agriculture, including animal husbandry and crop production and (ii) accumulation, leaching and runoff of carbon, nutrients (nitrogen, N, phosphorus, P, and base cations) and metals in or from soils to groundwater and surface water in the Netherlands. Key processes in soil are included by linear or non-linear process formulations to maintain transparency and to enable data availability for spatially explicit application from field up to national level. Calculated national trends in nutrient losses over 2000-2020 compared well with independent estimates and showed a reduction in N and P input of 26 to 33 %, whereas the surplus declined by 33 % for N and 86 % for P due to increased crop yields and reduced inputs. This was accompanied by a reduction of 30-35 % in atmospheric emissions of ammonia and nitrous oxide as well a decline in N and P runoff of 35 and 10 %, respectively, whereas the emission of methane increased with 4 %. Model results compared well with (i) large scale observations of ammonia concentrations in air and nitrate concentrations in upper groundwater and ditch water, (ii) with nitrous oxide emissions and phosphorus adsorption in experiments at field scale and (iii) with metal adsorption in large scale soil datasets. Various mitigation measures were evaluated in view of policy ambitions for climate, soil and environmental quality for 2030, i.e. a reduction of 50 % for NH3, 11-17 % for GHG, 20 % for N runoff and 40 % for P runoff and an ambition of 50 % GHG emission reduction for 2050. The measures focused on a combination of animal feeding, low emission housing and application technologies, improved crop, soil and nutrient management, all being applied with an effectiveness of 100 % and 50 %, respectively. In addition, we evaluated impacts of 50 % livestock reduction, and combination scenarios of measures and livestock reduction. Full implementation of all measures can reduce NH3 emission, N leaching and N runoff by approximately 40-50 % and GHG emissions by approximately 30 %, but there is less potential to reduce P runoff, being <10 %. The combination of a more likely 50 % implementation/effectiveness of measures with 25 % livestock reduction leads to a comparable reduction. Required reductions from Dutch agriculture seem not possible with improved management only, but also requires livestock reduction, especially when the NH3 ambitions at the short term (2030) and the climate ambitions for the long term (2050) should be attained.


Assuntos
Gases de Efeito Estufa , Metais Pesados , Animais , Amônia/análise , Óxido Nitroso/análise , Esterco , Fertilizantes , Água , Agricultura/métodos , Solo , Gado , Criação de Animais Domésticos , Nutrientes , Fósforo
20.
Sci Total Environ ; 903: 166657, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659538

RESUMO

To boost crop production, China uses almost a third of the world's nitrogen (N) fertilizer. However, N losses due to enhanced application of N fertilizers has led to surface water and groundwater pollution. A reduction in N losses without reducing crop yields is possible by increasing nitrogen use efficiency (NUE), which is important for the effective management of local crop production and water quality. This study used two representative agricultural counties in China (Quzhou and Qiyang) to assess if it is possible to achieve N loss thresholds in surface and groundwater by optimizing N management measures while maintaining actual crop production. We used a spatially explicit N balance model to assess the spatial variation in actual N inputs to soil and N losses to water, and in critical N losses and associated agricultural N inputs. We also used this model to calculate the spatial variation in actual NUEs and the required NUE to align actual crop production with N thresholds. We then assessed the feasibility of achieving the necessary NUE changes through optimizing agricultural N management strategies. It was found that actual N input exceeded critical N input in 95 and 83 % of the agricultural area in Quzhou and Qiyang, respectively. To meet actual crop production without exceeding N loss thresholds, the NUE needs to increase with 11 to 15 % whereas the total N input needs to be reduced by 37 %. NUE gaps can be closed by reducing N rates, enhancing organic manure recycling, and using efficiency-enhancing fertilizers, with optimal combinations being dependent on site conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA