Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci Technol ; 59(7): 2562-2571, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35734131

RESUMO

Blend films from chicken protein isolate (CPI) and fish skin gelatin (FSG) at various CPI/FSG ratios (100:0, 80:20, 70:30, 60:40, 0:100), prepared at pH 3 or 11 were characterized. At the same pH, tensile strength (TS) of CPI/FSG films was higher than CPI and FSG films, and CPI/FSG film (60:40) had highest TS. Moreover, elongation at break (EAB) of blend films increased as FSG content augmented. EAB of CPI film and CPI/FSG (80:20) film was similar for both pHs. CPI films generally possessed higher water vapor permeability (WVP), light barrier property and b*-value than FSG counterpart. CPI films prepared at both pHs were not sealable. Nevertheless, addition of FSG improved sealing ability of blend films. At the same CPI/FSG ratio, seal strength and seal efficiency were lower for films prepared at pH 11. Moreover, higher TS and b*-value were gained, compared to those of films prepared at pH 3. Less cracks on surface and cross-section appeared for CPI/FSG films as revealed by scanning electron microscopy images, compared to CPI and FSG films. Therefore, incorporation of FSG up to 40% into blend film was able to improve mechanical properties, WVP, and sealing ability of blend films.

2.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807473

RESUMO

The vision impairments suffered by millions of people worldwide and the shortage of corneal donors show the need of substitutes that mimic native tissue to promote cell growth and subsequent tissue regeneration. The current study focused on the in vitro assessment of protein-based biomaterials that could be a potential source for corneal scaffolds. Collagen, soy protein isolate (SPI), and gelatin films cross-linked with lactose or citric acid were prepared and physicochemical, transmittance, and degradation measurements were carried out. In vitro cytotoxicity, cell adhesion, and migration studies were performed with human corneal epithelial (HCE) cells and 3T3 fibroblasts for the films' cytocompatibility assessment. Transmittance values met the cornea's needs, and the degradation profile revealed a progressive biomaterials' decomposition in enzymatic and hydrolytic assays. Cell viability at 72 h was above 70% when exposed to SPI and gelatin films. Live/dead assays and scanning electron microscopy (SEM) analysis demonstrated the adhesion of both cell types to the films, with a similar arrangement to that observed in controls. Besides, both cell lines were able to proliferate and migrate over the films. Without ruling out any material, the appropriate optical and biological properties shown by lactose-crosslinked gelatin film highlight its potential for corneal bioengineering.


Assuntos
Materiais Biocompatíveis/química , Córnea/metabolismo , Engenharia Tecidual/métodos , Células 3T3 , Animais , Linhagem Celular , Ácido Cítrico/química , Colágeno/química , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/química , Epitélio Corneano/efeitos dos fármacos , Gelatina/química , Humanos , Lactose/química , Camundongos , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Suínos , Alicerces Teciduais/química
3.
Mar Drugs ; 18(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867255

RESUMO

Two Alteromonas sp. strains isolated from deep seawater were grown to promote the production of exopolysaccharides (EPS, E611 and E805), which were incorporated into chitosan solutions to develop films. The combination of the major marine polysaccharides (chitosan and the isolated bacterial EPS) resulted in the formation of homogenous, transparent, colorless films, suggesting good compatibility between the two components of the film-forming formulation. With regards to optical properties, the films showed low values of gloss, in the range of 5-10 GU, indicating the formation of non-glossy and rough surfaces. In addition to the film surface, both showed hydrophobic character, with water contact angles higher than 100 º, regardless of EPS addition. Among the two EPS under analysis, chitosan films with E805 showed better mechanical performance, leading to resistant, flexible, easy to handle films.


Assuntos
Alteromonas/metabolismo , Quitosana/química , Polissacarídeos Bacterianos/química , Cor , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos Bacterianos/isolamento & purificação , Água do Mar/microbiologia , Propriedades de Superfície , Resistência à Tração , Microbiologia da Água
4.
Carbohydr Polym ; 334: 122057, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553242

RESUMO

Coffee wastes are underused materials, largely available in coffee producing regions, which can be used to obtain pectins for the development of films for packaging. Coffee residual water (CRW) provided a phenolic and protein rich-pectic fraction (CRWP), which has 49 % uronic acid. This pectic fraction was used for the development of films with chitosan (Chit). Additionally, pectins extracted from coffee pulp with acid, Coffea arabica pectin (CAP), hot water-soluble pectic fraction (HWSP), and chelating agent-soluble pectic fraction (CSP), were used to develop pectin-chitosan films. Flow and viscoelastic properties of film forming solutions were assessed, showing better characteristics for the pectins from the pulp over those from the residual water. The different composition of the pectin fractions allowed to relate film properties with their structural features and Fourier transform infrared (FTIR) spectroscopy showed interactions between pectin and chitosan in the films. Results showed that CAP-Chit and CSP-Chit films were transparent, hydrophobic, and had the best mechanical properties. These results demonstrate that coffee residual wastes have the potential to provide pectins that can be used for the development of films.

5.
Gels ; 10(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38667642

RESUMO

Inks based on soybean protein isolate (SPI) were developed and their formulations were optimized as a function of the ink heat treatment and the content of other biopolymers to assess the effects of protein-polysaccharides and protein-protein interactions. First, the rheological behavior of the inks was analyzed in relation to the polyvinyl alcohol (PVA) concentration employed (20, 25, and 30 wt%) and, as a result of the analysis, the ink with 25 wt% PVA was selected. Additionally, sodium alginate (SA) and gelatin (GEL) were added to the formulations to improve the viscoelastic properties of the inks and the effect of the SA or GEL concentrations (1, 2, and 3 wt%) was studied. All inks showed shear thinning behavior and self-supporting abilities. Among all the 3D printed scaffolds, those with higher SA (3 wt%) or GEL (2 and 3 wt%) content showed higher shape fidelity and were selected for further characterization. Texture profile analysis demonstrated that the scaffolds prepared with previously heat-treated inks containing 3 wt% GEL showed the highest strength. Additionally, these scaffolds showed a higher water-uptake capacity profile.

6.
Int J Biol Macromol ; 256(Pt 2): 128486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042312

RESUMO

With the aim of replacing synthetic macromolecules by biological macromolecules for advanced applications, collagen films were produced with two different ionic liquids (ILs), choline dihydrogen phosphate ([Ch][DHP]) and choline serinate ([Ch][Seri]), added in order to modulate the electrical responses. The films were prepared by casting, varying IL content between 0 and 6 wt%. The morphology and thermal properties of the resulting films were found to be independent of both IL type and content. However, the highest direct curret (d.c.) electrical conductivity (1.4 × 10-8 S·cm-1) was achieved for collagen films containing 3 wt% [Ch][DHP]. Furthermore, it was demonstrated that IL/collagen films were non-cytotoxic, with cell activity values exceeding 70 %. These collagen films were proven to be suitable for force sensing applications, displaying excellent sensitivity and stability upon repeated testing.


Assuntos
Materiais Biocompatíveis , Líquidos Iônicos , Materiais Biocompatíveis/farmacologia , Colágeno , Colina , Fosforilcolina
7.
Int J Biol Macromol ; 277(Pt 2): 134364, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094892

RESUMO

Taking into account that natural polymers are renewable and biodegradable, hybrid materials based on natural polymers are required for advanced technological applications with reduced environmental footprint. In this work, sustainable composites have been developed based on collagen as a polymeric matrix and different magnetic fillers, in order to tailor magnetic response. The composites were prepared by solution casting with 30 wt% of magnetite nanoparticles (Fe3O4 NPs), magnetite nanorods (Fe3O4 NRs) or cobalt ferrite nanoparticles (CoFe2O4 NPs). It is shown that the magnetic filler type has no bearing on the morphology, physical-chemical, or thermal characteristics of the composites, whereas the mechanical properties are determined by the magnetic filler, leading to a reduction in tensile strength, with values of 4.95 MPa for Fe3O4 NPs, 9.20 MPa for Fe3O4 NRs and 5.21 MPa for CoFe2O4 NPs containing samples. However, the highest magnetization saturation is obtained for Fe3O4 NPs (44 emu.g-1) and the higher coercive field for CoFe2O4 NPs (2062 Oe). In order to prove functionality of the developed composites, a self-sensing magnetic actuator device has been developed with the composite film with CoFe2O4 NPs, showing high stability over cycling.


Assuntos
Cobalto , Colágeno , Nanopartículas de Magnetita , Nanocompostos , Nanocompostos/química , Colágeno/química , Cobalto/química , Nanopartículas de Magnetita/química , Compostos Férricos/química , Resistência à Tração , Fenômenos Magnéticos
8.
Polymers (Basel) ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679267

RESUMO

The management of food waste and by-products has become a challenge for the agri-food sector and an example are whey by-products produced in dairy industries. Seeking other whey valorisation alternatives and applications, whey protein films for food packaging applications were developed in this study. Films containing different amounts (0, 5, 10, and 15 wt%) of ascorbic acid were manufactured via compression-moulding and their physicochemical, thermal, barrier, optical, and mechanical properties were analysed and related to the film structure. Additionally, the environmental assessment of the films was carried out to analyse the impact of film manufacture. Regarding physicochemical properties, both FTIR and water uptake analyses showed the presence of non-covalent interactions, such as hydrogen bonding, between whey protein and ascorbic acid as band shifts at the 1500-1700 cm-1 region as well as a water absorption decrease from 380% down to 240% were observed. The addition of ascorbic acid notably improved the UV-Vis light absorbance capacity of whey protein films up to 500 nm, a relevant enhancement for protecting foods susceptible to UV-Vis light-induced lipid oxidation. In relation to the environmental assessment, it was concluded that scaling up film manufacture could lead to a reduction in the environmental impacts, mainly electricity consumption.

9.
Int J Bioprint ; 9(4): 731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323479

RESUMO

Cellulose-containing residue from agar production was incorporated as a filler into soy protein-based hydrogels and revalorized without further purification. Rheological assessment of these hydrogels was carried out in order to confirm their shear-thinning behavior and their suitability for 3D printing. It was observed that all hydrogels behaved as weak gels, which are suitable for 3D printing and have good printability and shape fidelity. The addition of cellulose did not cause chemical crosslinking but physical interactions, which led to morphological changes, thereby promoting hardness and shape recovery of the 3D-printed products. The hydrogel with the highest residue content (8 wt %) showed the highest value (78%) in shape recovery. Furthermore, the physicochemical characterization of these 3D-printed products revealed that although they have high swelling capacity, they preserve their integrity in wet conditions. These results suggested the potential of the 3D-printed products developed using residues without further purification to promote circular economy, increasing the efficiency in resources utilization.

10.
Int J Bioprint ; 9(1): 645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844236

RESUMO

309Sterilization is a crucial step in the process of developing bioinks for tissue engineering applications. In this work, alginate/gelatin inks were subjected to three sterilization methods: ultraviolet (UV) radiation, filtration (FILT), and autoclaving (AUTO). In addition, to simulate the sterilization effect in a real environment, inks were formulated in two different media, specifically, Dulbecco's Modified Eagle's Medium (DMEM) and phosphate-buffered saline (PBS). First, rheological tests were performed to evaluate the flow properties of the inks, and we observed that UV samples showed shear thinning behavior, which was favorable for three-dimensional (3D) printing. Furthermore, the 3D-printed constructs developed with UV inks showed better shape and size fidelity than those obtained with FILT and AUTO. In order to relate this behavior to the material structure, Fourier transform infrared (FTIR) analysis was carried out and the predominant conformation in protein was determined by deconvolution of the amide I band, which confirmed that the prevalence of a-helix structure was greater for UV samples. This work highlights the relevance of sterilization processes, which are essential for biomedical applications, in the research field of bioinks.

11.
Int J Bioprint ; 9(3): 701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273981

RESUMO

In this study, novel scaffolds based on natural polymers were developed by combining 3D printing (3DP) and electrospinning (ES) techniques. ES ink was prepared with gelatin and poly(vinyl alcohol) (PVA), while 3DP ink was prepared with gelatin and chitin. Different biopolymers were used to confer unique properties to each ink and obtain a multilayered scaffold suitable for tissue regeneration. First, gelatin is able to exhibit the characteristics needed for both inks since gelatin chains contain arginineglycine-aspartic (RGD) motifs, an important sequence in the promotion of cell adhesion, which gives gelatin an improved biological behavior in comparison to other polymers. Additionally, PVA was selected for ES ink to facilitate gelatin spinnability, and chitin was incorporated into 3DP ink as reinforcement to provide mechanical support and protection to the overall design. In this work, chitin was extracted from fruit fly pupae. The high extraction yield and purity of the chitin obtained from the fruit fly pupae confirmed that this pupa is an alternative source to produce chitin. Once the chitin was characterized, both inks were prepared and rheological analysis was carried out in order to confirm the shear thinning behavior required for additive manufacturing processes. The combination of 3DP and ES processes resulted in porous scaffolds, which were proven biocompatible, highlighting their potential for biomedical applications.

12.
Polymers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835904

RESUMO

This work reports on the development of collagen films with graphene oxide nanoparticles (GO NPs), aiming toward the development of a new generation of functional sustainable sensors. For this purpose, different GO NP contents up to 3 wt % were incorporated into a collagen matrix, and morphological, thermal, mechanical and electrical properties were evaluated. Independently of the GO NP content, all films display an increase in thermal stability as a result of the increase in the structural order of collagen, as revealed by XRD analysis. Further, the inclusion of GO NPs into collagen promotes an increase in the intensity of oxygen characteristic absorption bands in FTIR spectra, due to the abundant oxygen-containing functional groups, which lead to an increase in the hydrophilic character of the surface. GO NPs also influence the mechanical properties of the composites, increasing the tensile strength from 33.2 ± 2.4 MPa (collagen) to 44.1 ± 1.0 MPa (collagen with 3 wt % GO NPs). Finally, the electrical conductivity also increases slightly with GO NP content, allowing the development of resistive bending sensors.

13.
Int J Biol Macromol ; 227: 1070-1077, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464184

RESUMO

Chitosan-pectin films with iron oxide (Fe3O4) magnetic nanoparticles were prepared by solution casting in order to produce biopolymer based magnetically active materials. Infrared (FTIR) spectra indicated physical interactions between the matrix and nanoparticles, corroborated by differential scanning calorimetry (DSC) results. In addition, thermal characterization suggested that the interactions between chitosan, pectin and the nanoparticles resulted in a less compact structure, influencing the film mechanical properties. Regarding vibrating-sample magnetometry (VSM) and electrical analysis, chitosan-pectin films with Fe3O4 nanoparticles showed ferrimagnetic behavior, with an increase of the dielectric constant as the nanoparticle concentration increased. Furthermore, films displayed enhanced antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) bacteria. Therefore, chitosan-pectin films with Fe3O4 magnetic nanoparticles provide promising results for active and intelligent food packaging applications.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas , Pectinas/química , Quitosana/farmacologia , Quitosana/química , Nanopartículas/química , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
14.
Biomater Adv ; 155: 213682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925826

RESUMO

Chronic wounds are a worldwide problem that affect >40 million people every year. The constant inflammatory status accompanied by prolonged bacterial infections reduce patient's quality of life and life expectancy drastically. An important cell type involved in the wound healing process are mesenchymal stromal cells (MSCs) due to their long-term demonstrated immunomodulatory and pro-regenerative capacity. Thus, in this work, we leveraged and compared the therapeutic properties of MSCs derived from both adipose tissue and hair follicle, which we combined with sponge-like scaffolds (SLS) made of valorized soy protein and ß-chitin. In this regard, the combination of these cells with biomaterials permitted us to obtain a multifunctional therapy that allowed high cell retention and growing rates while maintaining adequate cell-viability for several days. Furthermore, this combined therapy demonstrated to increase fibroblasts and keratinocytes migration, promote human umbilical vein endothelial cells angiogenesis and protect fibroblasts from highly proteolytic environments. Finally, this combined therapy demonstrated to be highly effective in reducing wound healing time in vivo with only one treatment change during all the experimental procedure, also promoting a more functional and native-like healed skin.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Humanos , Proteínas de Soja/farmacologia , Proteínas de Soja/uso terapêutico , Proteínas de Soja/metabolismo , Folículo Piloso , Quitina/farmacologia , Quitina/uso terapêutico , Quitina/metabolismo , Qualidade de Vida , Cicatrização , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo , Diabetes Mellitus/metabolismo , Células Endoteliais da Veia Umbilical Humana
15.
J Mater Chem B ; 11(29): 6896-6910, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37377169

RESUMO

In the current study, we produced a hydro-film dressing for the treatment of chronic wounds. The hydro-film structure was composed of gelatin cross-linked with citric acid, agar and Aloe vera extract (AV); additionally epidermal growth factor (EGF) was loaded to promote wound healing. Due to the excellent hydrogel-forming ability of gelatin, the obtained hydro-film was able to swell 884 ± 36% of its dry weight, which could help controlling wound moisture. To improve gelatin mechanical properties, polymer chains were cross-linked with citric acid and agar, reaching an ultimate tensile strength that was in the highest range of human skin. In addition, it showed a slow degradation profile that resulted in a remaining weight of 28 ± 8% at day 28. Regarding, biological activity, the addition of AV and citric acid provided the ability to reduce human macrophage activation, which could help reverse the permanent inflammatory state of chronic wounds. Moreover, loaded EGF, together with the structural AV of the hydro-film, promoted human keratinocyte and fibroblast migration, respectively. Furthermore, the hydro-films presented excellent fibroblast adhesiveness, so they could be useful as provisional matrices for cell migration. Accordingly, these hydro-films showed suitable physicochemical characteristics and biological activity for chronic wound healing applications.


Assuntos
Aloe , Fator de Crescimento Epidérmico , Humanos , Fator de Crescimento Epidérmico/farmacologia , Aloe/química , Ágar/farmacologia , Gelatina/química , Cicatrização
16.
ACS Sustain Chem Eng ; 11(15): 5986-5998, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091126

RESUMO

Considering the sustainable development goals to reduce environmental impact, sustainable sensors based on natural polymers are a priority as the large im plementation of these materials is required considering the Internet of Things (IoT) paradigm. In this context, the present work reports on sustainable blends based on collagen and different ionic liquids (ILs), including ([Ch][DHP], [Ch][TSI], [Ch][Seri]) and ([Emim][TFSI]), processed with varying contents and types of ILs in order to tailor the electrical response. Varying IL types and contents leads to different interactions with the collagen polymer matrix and, therefore, to varying mechanical, thermal, and electrical properties. Collagen/[Ch][Seri] samples display the most pronounced decrease of the tensile strength (3.2 ± 0.4 MPa) and an increase of the elongation at break (50.6 ± 1.5%). The best ionic conductivity value of 0.023 mS cm-1 has been obtained for the sample with 40 wt % of the IL [Ch][Seri]. The functional response of the collagen-IL films has been demonstrated on a resistive touch sensor whose response depends on the ionic conductivity, being suitable for the next generation of sustainable touch sensing devices.

17.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501630

RESUMO

The wool fibers of the Latxa sheep breed were combined with a soy protein isolate (SPI) matrix to develop sustainable biocomposites with acoustic properties, adding value to Latxa sheep wool, which is currently considered a residue. Samples with 7, 10, 15, and 20 wt % wool were prepared by freeze drying in order to develop porous structures, as shown by SEM analysis. Additionally, XRD analysis provided the evidence of a change toward a more amorphous structure with the incorporation of wool fibers due to the interactions between the soy protein and keratin present in wool fibers, as shown by the relative intensity changes in the FTIR bands. The biocomposites were analyzed in a Kundt's tube to obtain their sound absorption coefficient at normal incidence. The results showed an acoustic absorption coefficient that well-surpassed 0.9 for frequencies above 1000 Hz. This performance is comparable to that of the conventional synthetic materials present in the market and, thus, sheep wool/SPI biocomposites are suitable to be used as acoustic absorbers in the building industry, highlighting the potential of replacing not only synthetic fibers but also synthetic polymers, with natural materials to enhance the sustainability of the building sector.

18.
Pharmaceutics ; 14(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559336

RESUMO

Complex scaffolds composed of micro- and nano-structures are a key target in tissue engineering and the combination of sequential 3D printing and electrospinning enables the fabrication of these multi-scale structures. In this work, dual 3D printed and electrospun polycaprolactone (PCL) scaffolds with multiple mesh layers were successfully prepared. The scaffold macro- and micro-porosity were assessed by optical and scanning electron microscopy, showing that electrospun fibers formed aligned meshes within the pores of the scaffold. Consequently, the hydrophilicity of the scaffold increased with time, enhancing cell adhesion and growth. Additionally, compression tests in back and forth cycles demonstrated a good shape recovery behavior of the scaffolds. Biological results indicated that hybrid PCL scaffolds are biocompatible and enable a correct cell culture over time. Moreover, MC3T3-E1 preosteoblast culture on the scaffolds promoted the mineralization, increased the alkaline phosphatase (ALP) activity and upregulated the expression of early and late osteogenic markers, namely ALP and osteopontin (OPN), respectively. These results demonstrate that the sequential combination of 3D printing and electrospinning provides a facile method of incorporating fibers within a 3D printed scaffold, becoming a promising approach towards multi-scale hierarchical scaffolds capable of guiding the osteogenic differentiation.

19.
Int J Biol Macromol ; 217: 449-456, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35841959

RESUMO

Red grape pomace was used as a source for poly(3-hydroxybutyrate) (PHB) production, which was then subject to a range of purification processes. The different PHB biopolymers were characterized for chemical structure, crystallinity, thermal properties, colour, release of compounds into different food simulants and antioxidant inhibition, and comparisons were made with a commercially available PHB. An increase in purification steps did not have a significant effect on the high thermal stability of the extracted biopolymer, but it decreased the degree of crystallinity and the presence of amino acids and aromatic compounds. With additional purification, the PHB powders also whitened and the number of components released from the biopolymer into food simulants decreased. The released compounds presented antioxidant inhibition, which has not been previously reported in the literature or with commercially available polyhydroxyalkanoates. This is of great interest for food packaging and biomedical industries where the addition of antioxidant additives to improve PHB functional properties may not be necessary and could be avoided.


Assuntos
Poli-Hidroxialcanoatos , Vitis , Antioxidantes/farmacologia , Biopolímeros/química , Embalagem de Alimentos
20.
Mater Today Bio ; 15: 100273, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35572855

RESUMO

Epistaxis is one of the most common otorhinolaryngology emergencies worldwide. Although there are currently several treatments available, they present several disadvantages. This, in addition to the increasing social need of being environmentally respectful, led us to investigate whether a sponge-like scaffold (SP-CH) produced from natural by-products of the food industry - soy protein and ß-chitin - can be employed as a nasal pack for the treatment of epistaxis. To evaluate the potential of our material as a nasal pack, it was compared with two of the most commonly used nasal packs in the clinic: a basic gauze and the gold standard Merocel®. Our SP-CH presented great physicochemical and mechanical properties, lost weight in aqueous medium, and could even partially degrade when incubated in blood. It was shown to be both biocompatible and hemocompatible in vitro, clearing up any doubt about its safety. It showed increased blood clotting capacity in vitro, as well as increased capacity to bind both red blood cells and platelets, compared to the standard gauze and Merocel®. Finally, a rat-tail amputation model revealed that our SP-CH could even reduce bleeding time in vivo. This work, carried out from a circular economy approach, demonstrates that a green strategy can be followed to manufacture nasal packs using valorized by-products of the food industry, with equal or even better hemostatic properties than the gold standard in the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA