Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chemphyschem ; 24(18): e202300329, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37405855

RESUMO

Charge transfer is one of the mechanisms involved in non-covalent interactions. In molecular dimers, its contribution to pairwise interaction energies has been studied extensively using a variety of interaction energy decomposition schemes. In polar interactions such as hydrogen bonds, it can contribute ten or several tens of percent of the interaction energy. Less is known about its importance in higher-order interactions in many-body systems, mainly because of the lack of methods applicable to this problem. In this work, we extend our method for the quantification of the charge-transfer energy based on constrained DFT to many-body cases and apply it to model trimers extracted from molecular crystals. Our calculations show that charge transfer can account for a large fraction of the total three-body interaction energy. This also has implications for DFT calculations of many-body interactions in general as it is known that many DFT functionals struggle to describe charge-transfer effects correctly.

2.
J Phys Chem A ; 127(34): 7045-7057, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37606197

RESUMO

The PUREX solvent extraction process, widely used for recovering uranium and plutonium from spent nuclear fuel, utilizes an organic solvent composed of tributyl phosphate (TBP). The emission of ionizing particles such as alpha particles, resulting from the decay of plutonium, makes the organic solvent vulnerable to degradation. Here, we study the ultrashort time alpha irradiation of tributylphosphate (TBP) and Pu(NO3)4(TBP)2 complex formed in the PUREX process. Electron dynamics is propagated by Real-Time-Dependent Auxiliary Density Functional Theory (RT-TD-ADFT). We investigate the use of previously proposed absorption boundary conditions (ABC) in the molecular orbital space to treat secondary electron emission. Basis set and exchange correlation functional effects with ABC are reported as well as a detailed analysis of the ABC parametrization. Preliminary results on the water molecule and then on TBP show that the phenomenological nature of the ABC parameters necessitates selecting appropriate values for each system under study. Irradiation of free and complexed TBP shows an influence of the ligands on the variation of atomic charges on the femtosecond time scale. An accumulation of atomic charges in the alkyl chains of TBP is observed in the case where the nitrate groups are predominantly irradiated. In addition, we find that the Pu atom regains its electric charge very rapidly after being hit by the projectile, with the coordination sphere serving as an electron reservoir to preserve its formal redox state. This study paves the road toward a full understanding of the degradation of organic extracants employed in the nuclear industry.

3.
J Comput Chem ; 43(22): 1464-1473, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35766295

RESUMO

Considering as test case a family of organic rod like push-pull molecules, we derived and applied density based index enabling the description and diagnostic of the electronic density evolution in real time-time dependent density functional theory (RT-TDDFT) simulations. In particular, both the charge transfer (CT) distance and a diagnostic index, the DCT and MAC RT respectively, were computed on the fly from the density distribution obtained at a given time and the reference ground state density and their mean values were compared with what obtained at Linear Response-TDDFT level. Besides giving a way of analyzing the density redistribution occurring in time, these tools allowed to show how RT-TDDFT, which is definitely a powerful method to model the evolution of the density in CT or charge separation processes, can be affected by the same artifacts known for LR-TDDFT approaches and, particularly, to those related to the use of approximate exchange correlation functionals. The analysis here performed allowed to identify and discard on fly the electronic configurations corresponding to spurious situations.


Assuntos
Teoria da Densidade Funcional
4.
Annu Rev Phys Chem ; 72: 445-465, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33878897

RESUMO

Ionizing rays cause damage to genomes, proteins, and signaling pathways that normally regulate cell activity, with harmful consequences such as accelerated aging, tumors, and cancers but also with beneficial effects in the context of radiotherapies. While the great pace of research in the twentieth century led to the identification of the molecular mechanisms for chemical lesions on the building blocks of biomacromolecules, the last two decades have brought renewed questions, for example, regarding the formation of clustered damage or the rich chemistry involving the secondary electrons produced by radiolysis. Radiation chemistry is now meeting attosecond science, providing extraordinary opportunities to unravel the very first stages of biological matter radiolysis. This review provides an overview of the recent progress made in this direction, focusing mainly on the atto- to femto- to picosecond timescales. We review promising applications of time-dependent density functional theory in this context.


Assuntos
DNA/efeitos da radiação , Lipídeos/efeitos da radiação , Proteínas/efeitos da radiação , Radiação Ionizante , Radioquímica/métodos , Simulação por Computador , Humanos , Modelos Teóricos , Radiólise de Impulso
5.
Phys Chem Chem Phys ; 24(27): 16784-16798, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775941

RESUMO

The radicals derived from flavin adenine dinucleotide (FAD) are a corner stone of recent hypotheses about magnetoreception, including the compass of migratory songbirds. These models attribute a magnetic sense to coherent spin dynamics in radical pairs within the flavo-protein cryptochrome. The primary determinant of sensitivity and directionality of this process are the hyperfine interactions of the involved radicals. Here, we present a comprehensive computational study of the hyperfine couplings in the protonated and unprotonated FAD radicals in cryptochrome 4 from C. livia. We combine long (800 ns) molecular dynamics trajectories to accurate quantum chemistry calculations. Hyperfine parameters are derived using auxiliary density functional theory applied to cluster and hybrid QM/MM (Quantum Mechanics/Molecular Mechanics) models comprising the FAD and its significant surrounding environment, as determined by a detailed sensitivity analysis. Thanks to this protocol we elucidate the sensitivity of the hyperfine interaction parameters to structural fluctuations and the polarisation effect of the protein environment. We find that the ensemble-averaged hyperfine interactions are predominantly governed by thermally induced geometric distortions of the flavin. We discuss our results in view of the expected performance of these radicals as part of a magnetoreceptor. Our data could be used to parametrize spin Hamiltonians including not only average values but also standard deviations.


Assuntos
Criptocromos , Flavina-Adenina Dinucleotídeo , Criptocromos/química , Flavina-Adenina Dinucleotídeo/química , Simulação de Dinâmica Molecular , Compostos Orgânicos
6.
J Chem Phys ; 156(2): 025101, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35032990

RESUMO

The avian compass and many other of nature's magnetoreceptive traits are widely ascribed to the protein cryptochrome. There, magnetosensitivity is thought to emerge as the spin dynamics of radicals in the applied magnetic field enters in competition with their recombination. The first and dominant model makes use of a radical pair. However, recent studies have suggested that magnetosensitivity could be markedly enhanced for a radical triad, the primary radical pair of which undergoes a spin-selective recombination reaction with a third radical. Here, we test the practicality of this supposition for the reoxidation reaction of the reduced FAD cofactor in cryptochrome, which has been implicated with light-independent magnetoreception but appears irreconcilable with the classical radical pair mechanism (RPM). Based on the available realistic cryptochrome structures, we predict the magnetosensitivity of radical triad systems comprising the flavin semiquinone, the superoxide, and a tyrosine or ascorbyl scavenger radical. We consider many hyperfine-coupled nuclear spins, the relative orientation and placement of the radicals, their coupling by the electron-electron dipolar interaction, and spin relaxation in the superoxide radical in the limit of instantaneous decoherence, which have not been comprehensively considered before. We demonstrate that these systems can provide superior magnetosensitivity under realistic conditions, with implications for dark-state cryptochrome magnetoreception and other biological magneto- and isotope-sensitive radical recombination reactions.


Assuntos
Anisotropia , Benzoquinonas/metabolismo , Criptocromos/metabolismo , Sequestradores de Radicais Livres/metabolismo , Campos Magnéticos , Superóxidos/metabolismo , Animais , Aves , Flavina-Adenina Dinucleotídeo/metabolismo , Oxirredução
7.
Phys Chem Chem Phys ; 23(37): 21148-21162, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528029

RESUMO

The early mechanisms by which ionizing rays damage biological structures by so-called direct effects are largely elusive. In a recent picosecond pulse radiolysis study of concentrated uridine monophosphate solutions [J. Ma, S. A. Denisov, J.-L. Marignier, P. Pernot, A. Adhikary, S. Seki and M. Mostafavi, J. Phys. Chem. Lett., 2018, 9, 5105], unexpected results were found regarding the oxidation of the nucleobase. The signature of the oxidized nucleobase could not be detected 5 ps after the electron pulse, but only the oxidized phosphate, raising intriguing questions about the identity of charge-transfer mechanisms that could explain the absence of U+. We address here this question by means of advanced first-principles atomistic simulations of solvated uridine monophosphate, combining Density Functional Theory (DFT) with polarizable embedding schemes. We contrast three very distinct mechanisms of charge transfer covering the atto-, femto- and pico-second timescales. We first investigate the ionization mechanism and subsequent hole/charge migrations on a timescale of attoseconds to a few femtoseconds under the frozen nuclei approximation. We then consider a nuclear-driven phosphate-to-oxidized-nucleobase electron transfer, showing that it is an uncompetitive reaction channel on the sub-picosecond timescale, despite its high exothermicity and significant electronic coupling. Finally, we show that non-adiabatic charge transfer is enabled by femtosecond nuclear relaxation after ionization. We show that electronic decoherence and the electronic coupling strength are the key parameters that determine the hopping probabilities. Our results provide important insight into the interplay between electronics and nuclear motions in the early stages of the multiscale responses of biological matter subjected to ionizing radiation.


Assuntos
Uridina Monofosfato/química , Água/química , Teoria da Densidade Funcional , Transporte de Elétrons , Hélio/química , Íons/química , Simulação de Dinâmica Molecular , Uridina Monofosfato/metabolismo
8.
Phys Chem Chem Phys ; 22(15): 7747-7758, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32236260

RESUMO

The primary processes that occur following direct irradiation of bio-macromolecules by ionizing radiation determine the multiscale responses that lead to biomolecular lesions. The so-called physical stage loosely describes processes of energy deposition and molecular ionization/excitation but remains largely elusive. We propose a new approach based on first principles density functional theory to simulate energy deposition in large and heterogeneous biomolecules by high-energy-transfer particles. Unlike traditional Monte Carlo approaches, our methodology does not rely on pre-parametrized sets of cross-sections, but captures excitation, ionization and low energy electron emission at the heart of complex biostructures. It furthermore gives access to valuable insights on ultrafast charge and hole dynamics on the femtosecond time scale. With this new tool, we reveal the mechanisms of ionization by swift ions in microscopic DNA models and solvated DNA comprising almost 750 atoms treated at the DFT level of description. We reveal a so-called ebb-and-flow ionization mechanism in which polarization of the irradiated moieties appears as a key feature. We also investigate where secondary electrons produced by irradiation localize on chemical moieties composing DNA. We compare irradiation of solvated DNA by light (H+, and He2+) vs. heavier (C6+) ions, highlighting the much higher probability of double ionization with the latter. Our methodology constitutes a stepping stone towards a greater understanding of the chemical stage and more generally towards the multiscale modelling of radiation damage in biology using first principles.


Assuntos
Simulação por Computador , DNA/química , DNA/efeitos da radiação , Modelos Químicos , Radiólise de Impulso
9.
Phys Chem Chem Phys ; 21(38): 21329-21340, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31531442

RESUMO

The interaction of a water molecule with ferric heme-iron protoporphyrin ([PP FeIII]+) has been investigated in the gas phase in an ion trap and studied theoretically by density functional theory. It is found that the interaction of water with ferric heme leads to a stable [PP-FeIII-H2O]+ complex in the intermediate spin state (S = 3/2), in the same state as its unligated [PP-FeIII]+ homologue, without spin crossing during water attachment. Using the Van't Hoff equation, the reaction enthalpy for the formation of a Fe-OH2 bond has been determined for [PP-FeIII-H2O]+ and [PP-FeIII-(H2O)2]+. The corrected binding energy for a single Fe-H2O bond is -12.2 ± 0.6 kcal mol-1, while DFT calculations at the OPBE level yield -11.7 kcal mol-1. The binding energy of the second ligation yielding a six coordinated FeIII atom is decreased with a bond energy of -9 ± 0.9 kcal mol-1, well reproduced by calculations as -7.1 kcal mol-1. However, calculations reveal features of a weaker bond type, such as a rather long Fe-O bond with 2.28 Å for the [PP-FeIII-H2O]+ complex and the absence of a spin change by complexation. Thus despite a strong bond with H2O, the FeIII atom does not show, through theoretical modelling, a strong acceptor character in its half filled 3dz2 orbital. It is also observed that the binding properties of H2O to hemes seem strikingly specific to ferric heme and we have shown, experimentally and theoretically, that the affinity of H2O for protonated heme [H PP-Fe]+, an intermediate between FeIII and FeII, is strongly reduced compared to that for ferric heme.

10.
Phys Chem Chem Phys ; 21(4): 1750-1760, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30623949

RESUMO

The binding energy of CO, O2 and NO to isolated ferric heme, [FeIIIP]+, was studied in the presence and absence of a σ donor (N-methylimidazole and histidine) as the trans axial ligand. This study combines the experimental determination of binding enthalpies by equilibrium measurements in a low temperature ion trap using the van't Hoff equation and high level DFT calculations. It was found that the presence of N-methylimidazole as the axial ligand on the [FeIIIP]+ porphyrin dramatically weakens the [FeIIIP-ligand]+ bond with an up to sevenfold decrease in binding energy owing to the σ donation by N-methylimidazole to the FeIII(3d) orbitals. This trans σ donor effect is characteristic of ligation to iron in hemes in both ferrous and ferric redox forms; however, to date, this has not been observed for ferric heme.


Assuntos
Hemina , Imidazóis , Sítios de Ligação , Hemina/química , Hemina/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Ferro/química , Ferro/metabolismo , Ligantes , Termodinâmica
11.
J Chem Phys ; 150(17): 174115, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067862

RESUMO

Multicomponent Density Functional Theory (MDFT) is a promising methodology to incorporate nuclear quantum effects, such as zero-point energy or tunneling, or to simulate other types of particles such as muons or positrons using particle densities as basic quantities. As for standard electronic DFT, a still ongoing challenge is to achieve the most efficient implementations. We introduce a multicomponent DFT implementation within the framework of auxiliary DFT, focusing on molecular systems comprising electrons and quantum protons. We introduce a dual variational procedure to determine auxiliary electron and proton densities which leads to a succession of approximate energy expressions. Electronic and protonic fitted densities are employed in (i) electron-electron, proton-proton, and electron-proton classical Coulomb interactions and (ii) electron exchange-correlation, proton-proton exchange, and electron-proton correlation (EPC) potentials. If needed, exact exchange among electrons or among protons is computed by the variational fitting of the corresponding Fock potential. The implementation is carried out in deMon2k. We test various electron proton correlation functionals on proton affinities. We find that auxiliary densities can be safely used in electron-electron, proton-proton, and electron-proton classical Coulomb interactions, as well as in EPC, albeit with some precautions related to the choice of the electronic auxiliary basis set that must be flexible enough. Computational tests reported indicate that introduction of density fitting in MDFT is clearly advantageous in terms of computational effort with good scaling properties with respect to the number of electrons and protons treated at the DFT level.

12.
Molecules ; 24(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035516

RESUMO

deMon2k is a readily available program specialized in Density Functional Theory (DFT) simulations within the framework of Auxiliary DFT. This article is intended as a tutorial-review of the capabilities of the program for molecular simulations involving ground and excited electronic states. The program implements an additive QM/MM (quantum mechanics/molecular mechanics) module relying either on non-polarizable or polarizable force fields. QM/MM methodologies available in deMon2k include ground-state geometry optimizations, ground-state Born-Oppenheimer molecular dynamics simulations, Ehrenfest non-adiabatic molecular dynamics simulations, and attosecond electron dynamics. In addition several electric and magnetic properties can be computed with QM/MM. We review the framework implemented in the program, including the most recently implemented options (link atoms, implicit continuum for remote environments, metadynamics, etc.), together with six applicative examples. The applications involve (i) a reactivity study of a cyclic organic molecule in water; (ii) the establishment of free-energy profiles for nucleophilic-substitution reactions by the umbrella sampling method; (iii) the construction of two-dimensional free energy maps by metadynamics simulations; (iv) the simulation of UV-visible absorption spectra of a solvated chromophore molecule; (v) the simulation of a free energy profile for an electron transfer reaction within Marcus theory; and (vi) the simulation of fragmentation of a peptide after collision with a high-energy proton.


Assuntos
Modelos Teóricos , Simulação de Dinâmica Molecular , Teoria Quântica , Algoritmos
13.
Phys Chem Chem Phys ; 20(17): 11730-11739, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29687125

RESUMO

A combined theoretical and experimental approach has been used to investigate the binding energy of a ruthenium metalloporphyrin ligated with CO, ruthenium tetraphenylporphyrin [RuII TPP], in the RuII oxidation degree. Measurements performed with VUV ionization using the DESIRS beamline at Synchrotron SOLEIL led to adiabatic ionization energies of [RuII TPP] and its complex with CO, [RuII TPP-CO], of 6.48 ± 0.03 eV and 6.60 ± 0.03 eV, respectively, while the ion dissociation threshold of [RuII TPP-CO]+ is measured to be 8.36 ± 0.03 eV using the ground-state neutral complex. These experimental data are used to derive the binding energies of the CO ligand in neutral and cationic complexes (1.88 ± 0.06 eV and 1.76 ± 0.06 eV, respectively) using a Born-Haber cycle. Density functional theory calculations, in very satisfactory agreement with the experimental results, help to get insights into the metal-ligand bond. Notably, the high ligation energies can be rationalized in terms of the ruthenium orbital structure, which is singular compared to that of the iron atom. Thus, beyond indications of a strengthening of the Ru-CO bond due to the decrease in the CO vibrational frequency in the complex as compared to the Fe-CO bond, high-level calculations are essential to accurately describe the metal ligand (CO) bond and show that the Ru-CO bond energy is strongly affected by the splitting of triplet and singlet spin states in uncomplexed [Ru TPP].

14.
J Comput Chem ; 38(18): 1612-1621, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28470751

RESUMO

Redox potentials are essential to understand biological cofactor reactivity and to predict their behavior in biological media. Experimental determination of redox potential in biological system is often difficult due to complexity of biological media but computational approaches can be used to estimate them. Nevertheless, the quality of the computational methodology remains a key issue to validate the results. Instead of looking to the best absolute results, we present here the calibration of theoretical redox potential for quinone derivatives in water coupling QM + MM or QM/MM scheme. Our approach allows using low computational cost theoretical level, ideal for long simulations in biological systems, and determination of the uncertainties linked to the calculations. © 2017 Wiley Periodicals, Inc.


Assuntos
Benzoquinonas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Algoritmos , Benzoquinonas/metabolismo , Transporte de Elétrons , Estrutura Molecular , Oxirredução , Termodinâmica , Água/química
15.
Phys Chem Chem Phys ; 19(4): 2894-2899, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28079196

RESUMO

Oxidation by the ultra-short lived radical cation of water, H2O˙+, can potentially take place at the interface of water and numerous heterogeneous systems involved in radiation therapy, energy and environmental industries. The oxidation processes induced by H2O˙+ can be mimicked in highly concentrated solutions where the nearest neighbors of H2O˙+ may be molecules other than water. The reactivity of H2O˙+ and D2O˙+ is probed in hydrogenated and deuterated sulfuric acid solutions of various concentrations. The oxidized solute, sulfate radical, is observed at 7 ps and remarkably higher yields are found in deuterated solutions. The isotopic effects reveal the competition between two ultrafast reactions: proton transfer toward H2O (D2O) and electron transfer from HSO4- to H2O˙+ (D2O˙+). Density functional theory simulations decipher the electron transfer mechanism: it proceeds via sub-femtosecond charge migration and is not affected by isotopic substitution. This work definitively demonstrates why direct oxidation triggered by H2O˙+ can be competitive with proton transfer.

16.
Phys Chem Chem Phys ; 19(36): 24493-24504, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28890968

RESUMO

Photolyases are flavoenzymes repairing UV-induced lesions in DNA, which may be activated by a photoreduction of their FAD cofactor. In most photolyases, this photoreduction proceeds by electron transfer along a chain of three tryptophan (Trp) residues, connecting the flavin to the protein surface. Much less studied, animal (6-4) photolyases (repairing pyrimidine-pyrimidone (6-4) photoproducts) are particularly interesting as they were recently shown to have a longer electron transfer chain, counting four Trp residues. Using femtosecond polarized transient absorption spectroscopy, we performed a detailed analysis of the photoactivation reaction in the (6-4) photolyase of Xenopus laevis with oxidized FAD. We showed that the excited flavin is very quickly reduced (∼0.5 ps) by a nearby tryptophan residue, yielding FAD˙- and WH˙+ radicals. Subsequent kinetic steps in the picosecond regime were assigned to the migration of the positive charge along the Trp tetrad, in competition with charge recombination. We propose that the positive charge is actually delocalized over various Trp residues during most of the dynamics and that charge recombination essentially occurs through the proximal tryptophanyl radical. Oxidation of the fourth tryptophan is thought to be reached about as fast as that of the third one (∼40 ps), based on a comparison with a mutant protein lacking the distal Trp, implying ultrafast electron transfer between these two residues. This unusual mechanism sheds light on the rich diversity of electron transfer pathways found in various photolyases, and evolution-related cryptochromes alike.

17.
J Am Chem Soc ; 138(6): 1904-15, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26765169

RESUMO

Cryptochromes and photolyases are flavoproteins that undergo cascades of electron/hole transfers after excitation of the flavin cofactor. It was recently discovered that animal (6-4) photolyases, as well as animal cryptochromes, feature a chain of four tryptophan residues, while other members of the family contain merely a tryptophan triad. Transient absorption spectroscopy measurements on Xenopus laevis (6-4) photolyase have shown that the fourth residue is effectively involved in photoreduction but at the same time could not unequivocally ascertain the final redox state of this residue. In this article, polarizable molecular dynamics simulations and constrained density functional theory calculations are carried out to reveal the energetics of charge migration along the tryptophan tetrad. Migration toward the fourth tryptophan is found to be thermodynamically favorable. Electron transfer mechanisms are sought either through an incoherent hopping mechanism or through a multiple sites tunneling process. The Jortner-Bixon formulation of electron transfer (ET) theory is employed to characterize the hopping mechanism. The interplay between electron transfer and relaxation of protein and solvent is analyzed in detail. Our simulations confirm that ET in (6-4) photolyase proceeds out of equilibrium. Multiple site tunneling is modeled with the recently proposed flickering resonance mechanism. Given the position of energy levels and the distribution of electronic coupling values, tunneling over three tryptophan residues may become competitive in some cases, although a hopping mechanism is likely to be the dominant channel. For both reactive channels, computed rates are very sensitive to the starting protein configuration, suggesting that both can take place and eventually be mixed, depending on the state of the system when photoexcitation takes place.


Assuntos
Desoxirribodipirimidina Fotoliase/química , Triptofano/química , Animais , Transporte de Elétrons , Simulação de Dinâmica Molecular
18.
Acc Chem Res ; 48(4): 1090-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25730126

RESUMO

Electron transfer in biological systems drives the processes of life. From cellular respiration to photosynthesis and enzymatic catalysis, electron transfers (ET) are chemical processes on which essential biological functions rely. Over the last 40 years, scientists have sought understanding of how these essential processes function in biology. One important breakthrough was the discovery that Marcus theory (MT) of electron transfer is applicable to biological systems. Chemists have experimentally collected both the reorganization energies (λ) and the driving forces (ΔG°), two parameters of Marcus theory, for a large variety of ET processes in proteins. At the same time, theoretical chemists have developed computational approaches that rely on molecular dynamics and quantum chemistry calculations to access numerical estimates of λ and ΔG°. Yet another crucial piece in determining the rate of an electron transfer is the electronic coupling between the initial and final electronic wave functions. This is an important prefactor in the nonadiabatic rate expression, since it reflects the probability that an electron tunnels from the electron donor to the acceptor through the intervening medium. The fact that a protein matrix supports electron tunneling much more efficiently than vacuum is now well documented, both experimentally and theoretically. Meanwhile, many chemists have provided examples of the rich physical chemistry that can be induced by protein dynamics. This Account describes our studies of the dynamical effects on electron tunneling. We present our analysis of two examples of natural biological systems through MD simulations and tunneling pathway analyses. Through these examples, we show that protein dynamics sustain efficient tunneling. Second, we introduce two time scales: τcoh and τFC. The former characterizes how fast the electronic coupling varies with nuclear vibrations (which cause dephasing). The latter reflects the time taken by the system to leave the crossing region. In the framework of open quantum systems, τFC is a short time approximation of the characteristic decoherence time of the electronic subsystem in interaction with its nuclear environment. The comparison of the respective values of τcoh and τFC allows us to probe the occurrence of non-Condon effects. We use ab initio MD simulations to analyze how decoherence appears in several biological cofactors. We conclude that we cannot account for its order of magnitude by considering only the atoms or bonds directly concerned with the transfer. Decoherence results from contributions from all atoms of the system appearing with a time delay that increases with the distance from the primarily concerned atoms or bonds. The delay and magnitude of the contributions depend on the chemical nature of the system. Finally, we present recent developments based on constrained DFT for efficient and accurate evaluations of the electronic coupling in ab initio MD simulations. These are promising methods to study the subtle fluctuations of the electronic coupling and the mechanisms of electronic decoherence in biological systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Teoria Quântica , Transporte de Elétrons , Proteínas/metabolismo
19.
Phys Chem Chem Phys ; 19(1): 791-803, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27929163

RESUMO

The role of charge transfer in halogen bonding is the subject of an ongoing debate and controversy. It is clear from experimental data that charge transfer occurs in halogen bonds, but its contribution to the energetics of the interaction can be evaluated only computationally. Since the charge transfer is not a physically well-defined property, there are multiple computational approaches, which could yield very different results. In this work, we investigate this topic using our recently developed method based on constrained DFT, which allows the quantification of net charge transfer and the associated interaction energy component [Rezác et al., J. Chem. Theory Comput., 2015]. It is based on the spatial definition of molecular fragments using the superimposed electron density of non-interacting fragments as a reference state free of charge transfer. This definition is close to the intuitive view of charge transfer, yet it removes any arbitrariness in the partitioning of the molecular complex. It has been shown to be very reliable as it avoids the issues encountered in other definitions of charge transfer. For example, the results are independent of the basis set. These calculations are complemented with DFT-SAPT decomposition, which yields the other components of the interaction energy. We have found the energetic contribution of charge transfer to halogen bonding to be rather small, on average about 10% of the interaction energy, which is less than that in hydrogen bonds. Even in very strong halogen bonds, where the absolute value of the charge-transfer energy becomes larger, it is still only a small fraction of the other attractive terms obtained from DFT-SAPT. These results suggest that although it is present, charge transfer is not the determining factor in halogen bonding.

20.
Phys Chem Chem Phys ; 18(25): 16700-8, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27270590

RESUMO

In this article we present a joint study by time-of-flight mass spectroscopy and density functional theory of cobalt protoporphyrin dimer complexes. The main novelty of the experimental part is to reveal the formation of porphyrin dimers that eventually include a chlorine atom. Density functional theory calculations have been performed to shed light on the structural and electronic properties of monomers and dimers that may be formed experimentally. Various geometries of the monomers are analyzed in the two lowest spin states. The electronic structures are examined by means of population analysis relying on the iterative Hirshfeld scheme and the topological analyses of the electron localization function. It is shown that the cobalt ligand bond is purely ionic in the triplet states but shows a noticeable covalent character in the singlet state. Ionization potential of Co-protoporphyrin and binding energies of the chlorine ligand are also reported. Concerning the dimers, several association patterns are investigated for the chlorinated and non-chlorinated complexes. It is found that the structures of the most stable complexes involve four hydrogen bonds between the carboxylic acid moieties of the protoporphyrins. However other association modes are likely to be possible in the experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA