Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(50): e2312484120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060556

RESUMO

We present a hybrid scheme based on classical density functional theory and machine learning for determining the equilibrium structure and thermodynamics of inhomogeneous fluids. The exact functional map from the density profile to the one-body direct correlation function is represented locally by a deep neural network. We substantiate the general framework for the hard sphere fluid and use grand canonical Monte Carlo simulation data of systems in randomized external environments during training and as reference. Functional calculus is implemented on the basis of the neural network to access higher-order correlation functions via automatic differentiation and the free energy via functional line integration. Thermal Noether sum rules are validated explicitly. We demonstrate the use of the neural functional in the self-consistent calculation of density profiles. The results outperform those from state-of-the-art fundamental measure density functional theory. The low cost of solving an associated Euler-Lagrange equation allows to bridge the gap from the system size of the original training data to macroscopic predictions upon maintaining near-simulation microscopic precision. These results establish the machine learning of functionals as an effective tool in the multiscale description of soft matter.

2.
Phys Rev Lett ; 130(26): 268203, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450808

RESUMO

Liquid structure carries deep imprints of an inherent thermal invariance against a spatial transformation of the underlying classical many-body Hamiltonian. At first order in the transformation field Noether's theorem yields the local force balance. Three distinct two-body correlation functions emerge at second order, namely the standard two-body density, the localized force-force correlation function, and the localized force gradient. An exact Noether sum rule interrelates these correlators. Simulations of Lennard-Jones, Yukawa, soft-sphere dipolar, Stockmayer, Gay-Berne and Weeks-Chandler-Andersen liquids, of monatomic water and of a colloidal gel former demonstrate the fundamental role in the characterization of spatial structure.

3.
Soft Matter ; 19(12): 2214-2223, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883340

RESUMO

We study theoretically the effect of a gravitational field on the equilibrium behaviour of a colloidal suspension of rods with different length-to-width aspect ratios. The bulk phases of the system are described with analytical equations of state. The gravitational field is then incorporated via sedimentation path theory, which assumes a local equilibrium condition at each altitude of the sample. The bulk phenomenology is significantly enriched by the presence of the gravitational field. In a suspension of elongated rods with five stable phases in bulk, the gravitational field stabilizes up to fifteen different stacking sequences. The sample height has a non-trivial effect on the stable stacking sequence. New layers of distinct bulk phases appear either at the top, at the bottom, or simultaneously at the top and the bottom when increasing the sample height at constant colloidal concentration. We also study sedimentation in a mass-polydisperse suspension in which all rods have the same shape but different buoyant masses.

4.
J Chem Phys ; 158(5): 054908, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754804

RESUMO

We investigate the stationary flow of a colloidal gel under an inhomogeneous external shear force using adaptive Brownian dynamics simulations. The interparticle forces are derived from the Stillinger-Weber potential, where the three-body term is tuned to enable network formation and gelation in equilibrium. When subjected to the shear force field, the system develops remarkable modulations in the one-body density profile. Depending on the shear magnitude, particles accumulate either in quiescent regions or in the vicinity of maximum net flow, and we deduce this strong non-equilibrium response to be characteristic of the gel state. Studying the components of the internal force parallel and perpendicular to the flow direction reveals that the emerging flow and structure of the stationary state are driven by significant viscous and structural superadiabatic forces. Thereby, the magnitude and nature of the observed non-equilibrium phenomena differ from the corresponding behavior of simple fluids. We demonstrate that a simple power functional theory reproduces accurately the viscous force profile, giving a rationale of the complex dynamical behavior of the system.

5.
J Chem Phys ; 157(23): 234901, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550036

RESUMO

Both polydispersity and the presence of a gravitational field are inherent to essentially any colloidal experiment. While several theoretical works have focused on the effect of polydispersity on the bulk phase behavior of a colloidal system, little is known about the effect of a gravitational field on a polydisperse colloidal suspension. We extend here the sedimentation path theory to study sedimentation-diffusion-equilibrium of a mass-polydisperse colloidal system: the particles possess different buoyant masses but they are otherwise identical. The model helps to understand the interplay between gravity and polydispersity on sedimentation experiments. Since the theory can be applied to any parent distribution of buoyant masses, it can also be used to study the sedimentation of monodisperse colloidal systems. We find that mass-polydispersity has a strong influence in colloidal systems near density matching for which the bare density of the colloidal particles equals the solvent density. To illustrate the theory, we study crystallization in sedimentation-diffusion-equilibrium of a suspension of mass-polydisperse hard spheres.

6.
Soft Matter ; 17(6): 1663-1674, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33367385

RESUMO

Paramagnetic colloidal spheres assemble to colloidal bipeds of various length in an external magnetic field. When the bipeds reside above a magnetic pattern and we modulate the direction of the external magnetic field, the rods perform topologically distinct classes of protected motion above the pattern. The topological protection allows each class to be robust against small continuous deformations of the driving loop of the external field. We observe motion of the rod from a passive central sliding and rolling motion for short bipeds toward a walking motion with both ends of the rod alternately touching down on the pattern for long bipeds. The change of character of the motion occurs in form of discrete topological transitions. The topological protection makes walking a form of motion robust against the breaking of the non symmorphic symmetry. In patterns with non symmorphic symmetry walking is reversible. In symmorphic patterns lacking a glide plane the walking can be irreversible or reversible involving or not involving ratchet jumps. Using different gauges allows us to unravel the active and passive aspects of the topological walks.

7.
J Chem Phys ; 155(4): 044903, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340383

RESUMO

We study theoretically the effect of size difference and that of gravity in the phase behavior of a binary mixture of patchy particles. The species, 2A and 3B, have two A and three B patches, respectively, and only bonds between patches A and B (AB bonds) are allowed. This model describes colloidal systems where the aggregation of particles (3B) is mediated and controlled by a second species, the linkers (2A) to which they bind strongly. Thermodynamic calculations are performed using Wertheim's perturbation theory with a hard sphere reference term that accounts for the difference in the size of the two species. Percolation lines are determined employing a generalized Flory-Stockmayer theory, and the effects of gravity are included through a local density approximation. The bulk phase diagrams are calculated, and all the stacking sequences generated in the presence of gravity are determined and classified in a stacking diagram. The relative size of the particles can be used to control the phase behavior of the mixture. An increase in the size of particles 3B, relative to the size of the linkers 2A, is found to promote mixing while keeping the percolating structures and, in certain cases, leads to changes in the stacking sequence under gravity.

8.
Phys Rev Lett ; 125(1): 018001, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678658

RESUMO

We present a fundamental classification of forces relevant in nonequilibrium structure formation under collective flow in Brownian many-body systems. The internal one-body force field is systematically split into contributions relevant for the spatial structure and for the coupled motion. We demonstrate that both contributions can be obtained straightforwardly in computer simulations and present a power functional theory that describes all types of forces quantitatively. Our conclusions and methods are relevant for flow in inertial systems, such as molecular liquids and granular media.

9.
Soft Matter ; 16(6): 1594-1598, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956884

RESUMO

Single and double paramagnetic colloidal particles are placed above a magnetic square pattern and are driven with an external magnetic field processing around a high symmetry direction of the pattern. The external magnetic field and that of the pattern confine the colloids into lanes parallel to a lattice vector of the pattern. The precession of the external field causes traveling minima of the magnetic potential along the direction of the lanes. At sufficiently high frequencies of modulation, only the doublets respond to the external field and move in direction of the traveling minima along the lanes, while the single colloids cannot follow and remain static. We show how the doublets can induce a coordinated motion of the single colloids building colloidal trains made of a chain of several single colloids transported by doublets.

10.
Phys Rev Lett ; 123(26): 268002, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951431

RESUMO

We present a microscopic theory for the nonequilibrium interfacial tension γ_{gl} of the free interface between gas and liquid phases of active Brownian particles. The underlying square gradient treatment and the splitting of the force balance in flow and structural contributions is general and applies to inhomogeneous nonequilibrium steady states. We find γ_{gl}≥0, which opposes claims by Bialké et al. [Phys. Rev. Lett. 115, 098301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.098301] and delivers the theoretical justification for the widely observed interfacial stability in active Brownian dynamics many-body simulations.

11.
Soft Matter ; 15(42): 8543-8551, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31638625

RESUMO

The question of how a dissipative geometrical transport system changes towards a topological transport system is important to render a fragile transport into a robust transport. We show how a macroscopic magnetic topological transport of solid state spheres changes to a geometrical transport of ferrofluid droplets, when instead of a solid state object, soft matter is transported. The key difference when comparing solid objects with fluid droplets is the possibility to split a ferrofluid droplet into two droplets. It is shown how this fundamental difference also fundamentally changes the transport properties. Hence, experimentally and theoretically the transport on top of a periodic two-dimensional hexagonal magnetic pattern of (i) a single macroscopic steel sphere, (ii) a doublet of wax/magnetite composite spheres, and (iii) an immiscible mixture of ferrofluid droplets with a perfluorinated liquid is analyzed. The transport of all these magnetic objects is achieved by moving an external permanent magnet on a closed modulation loop around the two-dimensional magnetic pattern. The transport of one and also that of two objects per unit cell is topologically protected and characterized by discrete displacements of the particles as we continuously scan through a family of modulation loops. The direction and the type of transport are characterized by the winding numbers of the modulation loops around special objects in control space, which is the space for the possible directions of the external magnetic field. The winding numbers necessary for characterizing the topological transport increase with the number of particles per unit cell. The topological character of the transport is destroyed, when transporting a large collection of particles per unit cell, like it is in the case of a macroscopic assembly of magnetic nanoparticles in a ferrofluid droplet for which the transport is geometrical and no longer topological. To characterize the change in the transport from topological to geometrical, we perform computer simulations of the transport of an increasing number of particles per unit cell.

12.
Soft Matter ; 15(7): 1539-1550, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608507

RESUMO

Edge currents of paramagnetic colloidal particles propagate at the edge between two topologically equivalent magnetic lattices of different lattice constant when the system is driven with periodic modulation loops of an external magnetic field. The number of topologically protected particle edge transport modes is not determined by a bulk-boundary correspondence. Instead, we find a rich variety of edge transport modes that depend on the symmetry of both the edge and the modulation loop. The edge transport can be ratchet-like or adiabatic, time or non-time reversal symmetric. The topological nature of the edge transport is classified by a set of winding numbers around bulk fence points extended by winding numbers around edge specific bifurcation points that cannot be deduced from the two bulk lattices.

13.
J Chem Phys ; 150(18): 184906, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091902

RESUMO

The excluded area between a pair of two-dimensional hard particles with given relative orientation is the region in which one particle cannot be located due to the presence of the other particle. The magnitude of the excluded area as a function of the relative particle orientation plays a major role in the determination of the bulk phase behavior of hard particles. We use principal component analysis (PCA) to identify the different types of excluded areas corresponding to randomly generated two-dimensional hard particles modeled as non-self-intersecting polygons and star lines (line segments radiating from a common origin). Only three principal components are required to have an excellent representation of the value of the excluded area as a function of the relative particle orientation for sufficiently anisotropic particles. Independent of the particle shape, the minimum value of the excluded area is always achieved when the particles are antiparallel to each other. The property that affects the value of the excluded area most strongly is the elongation of the particle shape. PCA identifies four limiting cases of excluded areas with one to four global minima at equispaced relative orientations. We study selected particle shapes using Monte Carlo simulations.

14.
Molecules ; 24(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614514

RESUMO

We apply the formally exact quantum power functional framework (J. Chem. Phys. 2015, 143, 174108) to a one-dimensional Hooke's helium model atom. The physical dynamics are described on the one-body level beyond the density-based adiabatic approximation. We show that gradients of both the microscopic velocity and acceleration field are required to correctly describe the effects due to interparticle interactions. We validate the proposed analytical forms of the superadiabatic force and transport contributions by comparison to one-body data from exact numerical solution of the Schrödinger equation. Superadiabatic contributions beyond the adiabatic approximation are important in the dynamics and they include effective dissipation.


Assuntos
Hélio/química , Teoria Quântica , Soluções/química , Aceleração , Simulação por Computador
15.
Phys Rev Lett ; 120(2): 028001, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376691

RESUMO

We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

16.
Phys Rev Lett ; 120(21): 218001, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883170

RESUMO

Calculating one-body density profiles in equilibrium via particle-based simulation methods involves counting of events of particle occurrences at (histogram-resolved) space points. Here, we investigate an alternative method based on a histogram of the local force density. Via an exact sum rule, the density profile is obtained with a simple spatial integration. The method circumvents the inherent ideal gas fluctuations. We have tested the method in Monte Carlo, Brownian dynamics, and molecular dynamics simulations. The results carry a statistical uncertainty smaller than that of the standard counting method, reducing therefore the computation time.

17.
Phys Rev Lett ; 121(9): 098002, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230856

RESUMO

We identify a structural one-body force field that sustains spatial inhomogeneities in nonequilibrium overdamped Brownian many-body systems. The structural force is perpendicular to the local flow direction, it is free of viscous dissipation, it is microscopically resolved in both space and time, and it can stabilize density gradients. From the time evolution in the exact (Smoluchowski) low-density limit, Brownian dynamics simulations, and a novel power functional approximation, we obtain a quantitative understanding of viscous and structural forces, including memory and shear migration.

18.
Soft Matter ; 14(18): 3572-3580, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29683174

RESUMO

We study the percolation properties for a system of functionalized colloids on patterned substrates via Monte Carlo simulations. The colloidal particles are modeled as hard disks with three equally-distributed attractive patches on their perimeter. We describe the patterns on the substrate as circular potential wells of radius Rp arranged in a regular square or hexagonal lattice. We find a nonmonotonic behavior of the percolation threshold (packing fraction) as a function of Rp. For attractive wells, the percolation threshold is higher than the one for clean (non-patterned) substrates if the circular wells are non-overlapping and can only be lower if the wells overlap. For repulsive wells we find the opposite behavior. In addition, at high packing fractions the formation of both structural and bond defects suppress percolation. As a result, the percolation diagram is reentrant with the non-percolated state occurring at very low and intermediate densities.

19.
Soft Matter ; 13(29): 5044-5075, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28703235

RESUMO

The topologically protected transport of colloidal particles on top of periodic magnetic patterns is studied experimentally, theoretically, and with computer simulations. To uncover the interplay between topology and symmetry we use patterns of all possible two dimensional magnetic point group symmetries with equal lengths lattice vectors. Transport of colloids is achieved by modulating the potential with external, homogeneous but time dependent magnetic fields. The modulation loops can be classified into topologically distinct classes. All loops falling into the same class cause motion in the same direction, making the transport robust against internal and external perturbations. We show that the lattice symmetry has a profound influence on the transport modes, the accessibility of transport networks, and the individual transport directions of paramagnetic and diamagnetic colloidal particles. We show how the transport of colloidal particles above a two fold symmetric stripe pattern changes from universal adiabatic transport at large elevations via a topologically protected ratchet motion at intermediate elevations toward a non-transport regime at low elevations. Transport above four-fold symmetric patterns is closely related to the two-fold symmetric case. The three-fold symmetric case however consists of a whole family of patterns that continuously vary with a phase variable. We show how this family can be divided into two topologically distinct classes supporting different transport modes and being protected by proper and improper six fold symmetries. We discuss and experimentally demonstrate the topological transition between both classes. All three-fold symmetric patterns support independent transport directions of paramagnetic and diamagnetic particles. The similarities and the differences in the lattice symmetry protected transport of classical over-damped colloidal particles versus the topologically protected transport in quantum mechanical systems are emphasized.

20.
J Chem Phys ; 145(7): 074903, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544122

RESUMO

We investigate percolation in binary and ternary mixtures of patchy colloidal particles theoretically and using Monte Carlo simulations. Each particle has three identical patches, with distinct species having different types of patch. Theoretically we assume tree-like clusters and calculate the bonding probabilities using Wertheim's first-order perturbation theory for association. For ternary mixtures, we find up to eight fundamentally different percolated states. The states differ in terms of the species and pairs of species that have percolated. The strongest gel is a trigel or tricontinuous gel, in which each of the three species has percolated. The weakest gel is a mixed gel in which all of the particles have percolated, but none of the species percolates by itself. The competition between entropy of mixing and internal energy of bonding determines the stability of each state. Theoretical and simulation results are in very good agreement. The only significant difference is the temperature at the percolation threshold, which is overestimated by the theory due to the absence of correlations between bonds in the theoretical description.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA